Home Physical Sciences THz ESR study of Spinel Compound GeCo2O4
Article
Licensed
Unlicensed Requires Authentication

THz ESR study of Spinel Compound GeCo2O4

  • Susumu Okubo , Hitoshi Ohta EMAIL logo , Tatsuya Ijima , Tatsuya Yamasaki , Weimin Zhang , Shigeo Hara , Shinichi Ikeda , Hiroyuki Oshima , Miwako Takahashi , Keisuke Tomiyasu and Tadataka Watanabe
Published/Copyright: October 15, 2016

Abstract

We performed terahertz ESR measurements of spin frustrated spinel compound GeCo2O4 using pulsed magnetic fields of up to 40 T. A very broad EPR absorption line was observed at 86 K. The g-values at 86 K were estimated to be g=5.26±0.07, 5.16±0.12 and 4.98±0.07 for B//[111], [100] and [110], respectively. High-field ESR measurements revealed complicated phase structures and a field-induced magnetic phase below 3 K. Critical fields of magnetic phases at 1.8 K for B//[111] were observed at 1.8 T, 5.0 T, 8.6 T, 11.0 T and 12.9 T for B//[111]. An energy gap of 300 GHz (=14.4 K=1.24 meV), which was related to the lattice deformation, was observed for B//[111]. The zero field gap of ω4 mode, which is considered to be a singlet-triplet excitation of the di-tetramer, was estimated to be 1120 GHz.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


Acknowledgements

The authors would like to thank Prof. Kev Salikhov for fruitful discussions. This research was partially supported by a Grant-in-Aid for Challenging Exploratory Research (No. 26610104) and a Grant-in-Aid for Scientific Research (C) (No. 26400335) from the Japan Society for the Promotion of Science (JSPS).

References

1. A. Ramirez, Rev. Mater. Sci. B 24 (1994) 453.10.1146/annurev.ms.24.080194.002321Search in Google Scholar

2. T. Suzuki, M. Matsumura, K. Taniguchi, T. Arima, T. Katsufuji, Phys. Rev. Lett. 98 (2007) 127203.10.1103/PhysRevLett.98.127203Search in Google Scholar PubMed

3. D. Khomskii, M. Mostovoy, J. Phys. A 36 (2003) 9197.10.1088/0305-4470/36/35/307Search in Google Scholar

4. R. Fichtl, V. Tsurkan, P. Lunkenheimer, J. Hemberger, V. Fritsch, H-A. Krung von Nidda, E-W. Scheidt, A. Loidl, Phys. Rev. Lett. 94 (2005) 027601.10.1103/PhysRevLett.94.027601Search in Google Scholar PubMed

5. K. Penc, N. Shannon, H. Shiba, Phys. Rev. Lett. 93 (2004) 197203.10.1103/PhysRevLett.93.197203Search in Google Scholar PubMed

6. A. Miyata, H. Ueda, Y. Ueda, H. Sawabe, S. Takeyama, Phys. Rev. Lett. 107 (2011) 207203.10.1103/PhysRevLett.107.207203Search in Google Scholar PubMed

7. W. Zhang, S. Okubo, H. Ohta, T. Saito, M. Takano, Phys. Stat. Sol. C 8 (2006) 2824.10.1002/pssc.200669629Search in Google Scholar

8. M. Yoshida, T. Hirano, Y. Inagaki, S. Okubo, H. Ohta, H. Kikuchi, I. Kagomiya, M. Toki, K. Kohn, J. Phys. Soc. Jpn. 75 (2006) 044709.10.1143/JPSJ.75.044709Search in Google Scholar

9. K. Yamada, M. Matsuda, Y. Endoh, B. Keimer, R. J. Birgeneau, S. Onodera, J. Mizusaki, T. Matsuura, G. Shirane, Phys. Rev. B 39 (1989) 2336.10.1103/PhysRevB.39.2336Search in Google Scholar

10. K. Momma, F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272.10.1107/S0021889811038970Search in Google Scholar

11. F. C. Romejin, Philips Res. Rep. 8 (1953) 304.10.1177/002070205300800421Search in Google Scholar

12. S. Diaz, S. de Brio, M. Holzapfel, G. Chouteau, P. Strobel, Physica B 346–347 (2004) 146.10.1016/j.physb.2004.01.038Search in Google Scholar

13. T. Hoshi, H. Aruga Katori, M. Kosaka, H. Takagi, J. Magn. Magn. Mater. 310 (2007) 448.10.1016/j.jmmm.2006.10.845Search in Google Scholar

14. T. Watanabe, S. Hara, S. Ikeda, Phys. Rev. B 78 (2008) 094420.10.1103/PhysRevB.78.094420Search in Google Scholar

15. S. Diaz, S. de Brion, G. Chouteau, P. Strobel, B. Canals, J. R. Carvajal, H. Rakoto, J. M. Broto, J. Appl. Phys. 97 (2005) 10A512.10.1063/1.1863113Search in Google Scholar

16. R. Stevens, B. F. Woodfield, J. Boerio-Goates, M. K. Crawford, J. Chem. Thermodynamics 36 (2004) 359.10.1016/j.jct.2003.12.011Search in Google Scholar

17. J. Hubsch, G. Gavoille, J. Magn. Magn. Mater. 66 (1987) 17.10.1016/0304-8853(87)90122-3Search in Google Scholar

18. J. C. Lashley, R. Stevens, M. K. Crawford, J. Boerio-Goates, B. F. Woodfield, J. W. Lynn, P. A. Goddard, R. A. Fisher, Phys. Rev. B 78 (2008) 104406.10.1103/PhysRevB.78.104406Search in Google Scholar

19. K. Tomiyasu, A. Tominaga, S. Hara, H. Sato, T. Watanabe, S. Ikeda, H. Hiraka, K. Iwasa, K. Yamada, J. Phys.: Conf. Serie. 320 (2011) 012038.10.1088/1742-6596/320/1/012038Search in Google Scholar

20. S. Diaz, S. de Brion, G. Chouteau, B. Canais, V. Simonet, P. Strobel, Phys. Rev. B 74 (2006) 092404.10.1103/PhysRevB.74.092404Search in Google Scholar

21. T. Yamasaki, S. Okubo, H. Ohta, T. Sakurai, S. Ikeda, H. Oshima, M. Takahashi, S. Hara, K. Tomiyasu, T. Watanabe, J. Phys.: Conf. Serie. 400 (2012) 032119.10.1088/1742-6596/400/3/032119Search in Google Scholar

22. S. Hara, Y. Yoshida, S. Ikeda, N. Shirakawa, M. K. Crawford, K. Takase, Y. Takano, K. Sekizawa, J. Cryst. Growth 283 (2005) 185.10.1016/j.jcrysgro.2005.05.078Search in Google Scholar

23. N. Nakagawa, T. Yamada, K. Akioka, S. Okubo, S. Kimura, H. Ohta, Int. J. Infrared Millimeter Waves 19 (1998) 167.10.1023/A:1022511405901Search in Google Scholar

24. M. Motokawa, H. Ohta, N. Maki, Int. J. Infrared Millimeter Waves 12 (1991) 149.10.1007/BF01009889Search in Google Scholar

25. S. Kimura, H. Ohta, M. Motokawa, S. Mitsudo, W.-J. Jang, M. Hasegawa, H. Takei, Int. J. Infrared Millimeter Waves 17 (1996) 833.10.1007/BF02101391Search in Google Scholar

26. H. Ohta, M. Tomoo, S. Okubo, T. Sakurai, M. Fujisawa, T. Tomita, M. Kimata, T. Yamamoto, M. Kawauchi, K. Kindo, J. Phys: Conf. Serie. 61 (2006) 611.10.1088/1742-6596/51/1/140Search in Google Scholar

27. S. Okubo, H. Ohta, Y. Inagaki, T. Sakurai, Physica B 346–347 (2004) 627.10.1016/j.physb.2004.01.072Search in Google Scholar

28. A. Abragam, M. H. L. Pryce, Proc. Royal. Soc. London. Serie. A 206 (1951) 173.10.1098/rspa.1951.0063Search in Google Scholar

29. M. E. Lines, Phys. Rev. 131 (1963) 546.10.1103/PhysRev.131.546Search in Google Scholar

30. H. Shiba, Y. Ueda, K. Okunichi, S. Kimura, K. Kindo, J. Phys. Soc. Jpn. 72 (2003) 2326.10.1143/JPSJ.72.2326Search in Google Scholar

31. P. T. Barton, M. C. Kemei, M. W. Gaultois, S. L. Moffitt, L. E. Darago, R. Seshadri, M. R. Suchomel, B. C. Melot, Phys. Rev. B 90 (2014) 064105.10.1103/PhysRevB.90.064105Search in Google Scholar

32. K. Tomiyasu, M. K. Crawford, D. T. Adroja, P. Manuel, A. Tominaga, S. Hara, H. Sato, T. Watanabe, Phys. Rev. B 84 (2011) 054405.10.1103/PhysRevB.84.054405Search in Google Scholar

33. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 32 (1972) 337.10.1143/JPSJ.32.337Search in Google Scholar

34. Y. Tsunoda, H. Suzuki, S. Katano, K. Siratori, E. Kita, K. Kohn, J. Phys. Soc. Jpn. 75 (2006) 064710.10.1143/JPSJ.75.064710Search in Google Scholar

35. H. Ohta, S. Okubo, S. Ono, H. Kikuchi, Phys. Stat. Sol. C 8 (2006) 2816.10.1002/pssc.200669533Search in Google Scholar

36. T. Watanabe, S. Hara, S. Ikeda, K. Tomiyasu, Phys. Rev. 84 (2011) 020409.10.1103/PhysRevB.84.020409Search in Google Scholar

37. The critical field resonance has been pointed out theoretically by Nagamiya. T. Nagamiya, Prog. Theor. Phys. 11 (1954) 309.10.1143/PTP.11.309Search in Google Scholar

38. The critical field resonance has been observed experimentally by M. Data group. M. Date, K. Nagata, J. Appl. Phys. 34 (1963) 1038.10.1063/1.1729361Search in Google Scholar

39. The detail angular dependence measurements of the critical field resonance for antiferromagnet CuCl2·2H2O has been reported by K. Nagata. An absorption intensity of the critical field resonance decreases abruptly, when the applied magnetic field parallels absolutely the easy axis within 0.1°. K. Nagata, H. Yamazaki, M. Date, Abstract of the meetings of Physical Society of Japan 18th Annual Meeting, 1963, Part 4, p. 435, 7p-F-6Search in Google Scholar

40. H. Nojiri, H. Ohta, S. Okubo, O. Fujita, J. Akimitsu, M. Motokawa, J. Phys. Soc. Jpn. 68 (1999) 3417.10.1143/JPSJ.68.3417Search in Google Scholar

41. H. Aruga Katori, “Novel States of Matter Induced by Frustration” Meeting in Osaka Univ. at Jan., 2012.Search in Google Scholar

42. H. Ueda, H. Mitamura, T. Goto, Y. Ueda, Phys. Rev. B 73 (2006) 094415.10.1103/PhysRevB.73.094415Search in Google Scholar

43. S. Kimura, M. Hagiwara, T. Takeuchi, H. Yamaguchi, H. Ueda, Y. Ueda, K. Kindo, Phys. Rev. B 83 (2011) 214401.10.1103/PhysRevB.83.214401Search in Google Scholar

44. M. Date, M. Motokawa, Phys. Rev. Lett. 16 (1966) 1111.10.1103/PhysRevLett.16.1111Search in Google Scholar

45. M. Date, M. Motokawa, J. Phys. Soc. Jpn. 24 (1968) 41.10.1143/JPSJ.24.41Search in Google Scholar

46. T. Kunimoto, K. Nagasaka, H. Nojiri, S. Luther, M. Motokawa, H. Ohta, T. Goto, S. Okubo, K. Kohn, J. Phys. Soc. Jpn. 68 (1999) 170310.1143/JPSJ.68.1703Search in Google Scholar

Received: 2016-6-22
Accepted: 2016-9-22
Published Online: 2016-10-15
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0841/html
Scroll to top button