Abstract
Halogen-bonded complexes with neutral nitroxide radicals as the Lewis base have been investigated in liquid and frozen solutions by multifrequency CW and pulse EPR spectroscopies, including ENDOR and ELDOR-detected NMR (EDNMR) techniques. The non-covalent interaction with iodopentafluorobenzene as halogen-bond donor is shown to affect a variety of EPR parameters of the stable nitroxide radicals. In liquid solution, only bulk effects on the EPR signal, i.e. isotropic g value, isotropic 14N hyperfine coupling and linewidth, are observed. Experiments on frozen solutions allow for a more in-depth dissection of complexing effects. W-band EPR spectra at cryogenic temperatures exhibit multiple signal components of different 14N hyperfine interactions and spectral widths. This demonstrates the coexistence of several halogen-bonded complexes that differ in donor-acceptor binding geometries. These complexes have different relaxation properties, which allow for their spectral discrimination. 19F ENDOR experiments prove the origin of these effects to be different specific intermolecular interactions rather than a consequence of changes in the solvation environment. The EPR spectra yet reveal a strong influence of solvent composition on the amount of the various complexes formed. The introduced methodology for the characterization of such adducts improves our understanding of halogen bonding and could be helpful in the development of tailor-made donors and complexes for specific applications.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday.
Acknowledgement:
This work was supported by the Max-Planck-Gesellschaft and the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG).
References
1. P. Metrangolo, G. Resnati, (Eds.), Halogen Bonding: Fundamentals and Applications, Springer-Verlag, Berlin, Heidelberg (2008).10.1007/978-3-540-74330-9Search in Google Scholar
2. P. Metrangolo, G. Resnati, Chem. – Eur. J. 7 (2001) 2511.10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-TSearch in Google Scholar
3. P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 38 (2005) 386.10.1021/ar0400995Search in Google Scholar
4. P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 47 (2008) 6114.10.1002/anie.200800128Search in Google Scholar
5. M. Fourmigue, Curr. Opin. Solid State Mater. Sci. 13 (2009) 36.10.1016/j.cossms.2009.05.001Search in Google Scholar
6. A. C. Legon, Phys. Chem. Chem. Phys. 12 (2010) 7736.10.1039/c002129fSearch in Google Scholar
7. S. H. Jungbauer, S. Schindler, F. Kniep, S. M. Walter, L. Rout, S. M. Huber, Synlett 24 (2013) 2624.10.1055/s-0033-1338981Search in Google Scholar
8. S. Schindler, S. M. Huber, In: Halogen Bonding II: Impact on Materials Chemistry and Life Sciences, (Eds. P. Metrangolo and G. Resnati), volume 359, Springer International Publishing, Cham (2015), p. 167.Search in Google Scholar
9. S. H. Jungbauer, S. M. Huber, J. Am. Chem. Soc. 137 (2015) 12110.10.1021/jacs.5b07863Search in Google Scholar
10. P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 12 (2010) 7748.10.1039/c004189kSearch in Google Scholar
11. O. Hassel, J. Hvoslef, Acta Chem. Scand. 8 (1954) 873.10.3891/acta.chem.scand.08-0873Search in Google Scholar
12. P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 16789.10.1073/pnas.0407607101Search in Google Scholar
13. I. Morishima, T. Inubushi, T. Yonezawa, K. Endo, Chem. Phys. Lett. 14 (1972) 372.10.1016/0009-2614(72)80136-2Search in Google Scholar
14. I. Morishima, T. Yonezawa, K. Endo, T. Inubushi, K. Goto, J. Am. Chem. Soc. 94 (1972) 4812.10.1021/ja00769a003Search in Google Scholar
15. I. Morishima, T. Inubushi, T. Yonezawa, J. Am. Chem. Soc. 98 (1976) 3808.10.1021/ja00429a012Search in Google Scholar
16. Y. Hosokoshi, M. Tamura, K. Nozawa, S. Suzuki, M. Kinoshita, H. Sawa, R. Kato, Synth. Met. 71 (1995) 1795.10.1016/0379-6779(94)03054-ASearch in Google Scholar
17. F. Iwasaki, J. H. Yoshikawa, H. Yamamoto, E. Kan-Nari, K. Takada, M. Yasui, T. Ishida, T. Nogami, Acta Crystallogr. Sect. B: Struct. Sci. 55 (1999) 231.10.1107/S0108768198012786Search in Google Scholar
18. I. M. Ganiev, Q. K. Timerghazin, A. F. Khalizov, N. M. Andriyashina, V. V. Shereshovets, L. B. Volodarsky, G. A. Tolstikov, Tetrahedron Lett. 40 (1999) 4737.10.1016/S0040-4039(99)00837-0Search in Google Scholar
19. I. M. Ganiev, Q. K. Timerghazin, A. F. Khalizov, V. V. Shereshovets, A. I. Grigor’ev, G. A. Tolstikov, J. Phys. Org. Chem. 14 (2001) 38.10.1002/1099-1395(200101)14:1<38::AID-POC334>3.0.CO;2-ZSearch in Google Scholar
20. K. Boubekeur, J. L. Syssa-Magale, P. Palvadeau, B. Schollhorn, Tetrahedron Lett. 47 (2006) 1249.10.1016/j.tetlet.2005.12.088Search in Google Scholar
21. V. Mugnaini, C. Punta, R. Liantonio, P. Metrangolo, F. Recupero, G. Resnati, G. F. Pedulli, M. Lucarini, Tetrahedron Lett. 47 (2006) 3265.10.1016/j.tetlet.2006.03.033Search in Google Scholar
22. G. R. Hanson, P. Jensen, J. McMurtrie, L. Rintoul, A. S. Micallef, Chem. – Eur. J. 15 (2009) 4156.10.1002/chem.200801920Search in Google Scholar
23. G. M. Espallargas, A. Recuenco, F. M. Romero, L. Brammer, S. Libri, CrystEngComm 14 (2012) 6381.10.1039/c2ce26131fSearch in Google Scholar
24. P. Cimino, M. Pavone, V. Barone, J. Phys. Chem. A 111 (2007) 8482.10.1021/jp073567bSearch in Google Scholar PubMed
25. C. Cavallotti, P. Metrangolo, F. Meyer, F. Recupero, G. Resnati, J. Phys. Chem. A 112 (2008) 9911.10.1021/jp803685rSearch in Google Scholar PubMed
26. A. Savitsky, M. Plato, K. Möbius, Appl. Magn. Reson. 37 (2010) 415.10.1007/s00723-009-0064-9Search in Google Scholar
27. A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242 (2014) 203.10.1016/j.jmr.2014.02.026Search in Google Scholar PubMed
28. E. Bordignon, A. I. Nalepa, A. Savitsky, L. Braun, G. Jeschke, J. Phys. Chem. B 119 (2015) 13797.10.1021/acs.jpcb.5b04104Search in Google Scholar PubMed
29. A. Savitsky, A. A. Dubinskii, M. Plato, Y. A. Grishin, H. Zimmermann, K. Möbius, J. Phys. Chem. B 112 (2008) 9079.10.1021/jp711640pSearch in Google Scholar PubMed
30. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, M. Fuchs, Phys. Chem. Chem. Phys. 7 (2005) 19.10.1039/B412180ESearch in Google Scholar PubMed
31. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and their Model Systems, RSC Publishing, Cambridge, UK (2008).Search in Google Scholar
32. O. Burghaus, M. Rohrer, T. Götzinger, M. Plato, K. Möbius, Meas. Sci. Technol. 3 (1992) 765.10.1088/0957-0233/3/8/013Search in Google Scholar
33. E. L. Hahn, Phys. Rev. 80 (1950) 580.10.1103/PhysRev.80.580Search in Google Scholar
34. L. G. Rowan, E. L. Hahn, W. B. Mims, Phys. Rev. 137 (1965) A61.10.1103/PhysRev.137.A61Search in Google Scholar
35. P. Schosseler, T. Wacker, A. Schweiger, Chem. Phys. Lett. 224 (1994) 319.10.1016/0009-2614(94)00548-6Search in Google Scholar
36. W. B. Mims, Proc. R. Soc. Lond. A 283 (1965) 452.10.1098/rspa.1965.0034Search in Google Scholar
37. R. Improta, V. Barone, Chem. Rev. 104 (2004) 1231.10.1021/cr960085fSearch in Google Scholar
38. T. Kawamura, S. Matsunam, T. Yonezawa, Bull. Chem. Soc. Jpn. 40 (1967) 1111.10.1246/bcsj.40.1111Search in Google Scholar
39. O. H. Griffith, P. J. Dehlinge, S. P. Van, J. Membr. Biol. 15 (1974) 159.10.1007/BF01870086Search in Google Scholar
40. R. Owenius, M. Engstrom, M. Lindgren, M. Huber, J. Phys. Chem. A 105 (2001) 10967.10.1021/jp0116914Search in Google Scholar
41. P. Franchi, M. Lucarini, P. Pedrielli, G. F. Pedulli, ChemPhysChem 3 (2002) 789.10.1002/1439-7641(20020916)3:9<789::AID-CPHC789>3.0.CO;2-ZSearch in Google Scholar
42. H. Lefebvre-Brion, R. W. Field, Perturbations in the Spectra of Diatomic Molecules, Academic Press, Inc., Orlando (1986).Search in Google Scholar
43. M. Engstrom, R. Owenius, O. Vahtras, Chem. Phys. Lett. 338 (2001) 407.10.1016/S0009-2614(01)00311-6Search in Google Scholar
44. B. C. Gilbert, R. O. C. Norman, J. Chem. Soc. B (1967) 981.10.1039/j29670000981Search in Google Scholar
45. H. Sillescu, Mol. Phys. 14 (1968) 381.10.1080/00268976800100461Search in Google Scholar
46. E. F. Ullman, L. Call, J. H. Osiecki, J. Org. Chem. 35 (1970) 3623.10.1021/jo00836a008Search in Google Scholar
47. N. Cox, W. Lubitz, A. Savitsky, Mol. Phys. 111 (2013) 2788.10.1080/00268976.2013.830783Search in Google Scholar
48. N. Cox, A. Nalepa, M. E. Pandelia, W. Lubitz, A. Savitsky, in: Methods in Enzymology, (Eds. P. Z. Qin and K. Warncke), volume 563, Elsevier, Amsterdam (2015), p. 211.10.1016/bs.mie.2015.08.016Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency