Abstract
We present natural abundance nitrogen-15 (NAN15) NMR spectroscopy in thermotropic liquid crystals. It is demonstrated that high resolution NAN15 NMR spectra in mesophases can be accurately recorded in non-spinning samples with a high orientational molecular order and strong anisotropic spin interactions. In this technique, due to low demand on radio-frequency decoupling power, standard solution-state probes can be used, which generally provide superior sensitivity and spectroscopic resolution in comparison to solid-state probes. We show that 15N chemical shift anisotropy (CSA) can be used as a sensitive probe of molecular orientational dynamics in liquid crystals. This method is exploited here to measure the orientational molecular order parameter of the nematic 4-pentyl-4′-cyanobiphenyl (5CB). Since the nitrogen spectra are obtained from the molecules constituting the mesophase rather than from probe molecules, the information is direct and the analysis and interpretation is straightforward. Nitrogen CSA of immobilized molecules, required in the analysis, is obtained using a DFT calculation. The approach provided consistent results for the order parameter in the nematic 5CB in the whole temperature range, in good agreement with literature data.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday.
Acknowledgments
L. J. acknowledges KTH fund for summer studentship. We thank Björn Dahlgren (KTH) and Tore Brinck (KTH) for support with DFT analysis.
References
1. R. Y. Dong, Nuclear magnetic resonance spectroscopy of liquid crystals, London: Worlds Scientific, 2010.10.1142/7310Search in Google Scholar
2. P. G. de Gennes, J. Prost, The physics of liquid crystals, Oxford: Clarendon, 1993.10.1093/oso/9780198520245.001.0001Search in Google Scholar
3. B. M. Fung, Prog. Nucl. Magn. Reson. Spectrosc. 41 (2002) 171.10.1016/S0079-6565(02)00048-1Search in Google Scholar
4. S. V. Dvinskikh, D. Sandström, H. Zimmermann, A. Maliniak, Progr. Nucl. Magn. Reson. Spectrosc. 48 (2006) 85.10.1016/j.pnmrs.2005.12.002Search in Google Scholar
5. H. Zimmermann, Liq. Cryst. 4 (1989) 591.10.1080/02678298908033195Search in Google Scholar
6. P. Lesot, J. Courtieu, Progr. Nucl. Magn. Reson. Spectr. 55 (2009) 128.10.1016/j.pnmrs.2009.01.001Search in Google Scholar
7. D. Sandström, H. Zimmermann, J. Phys. Chem. B 104 (2000) 1490.10.1021/jp9938765Search in Google Scholar
8. M. Witanowski, G. A. Webb, Nitrogen NMR, London: Plenum Press (1973).10.1007/978-1-4684-8175-4Search in Google Scholar
9. I. Schnell, K. Saalwächter, J. Am. Chem. Soc. 124 (2002) 10938.10.1021/ja026657xSearch in Google Scholar PubMed
10. A. Lesage, P. Charmont, S. Steuernagel, L. Emsley, J. Am. Chem. Soc. 122 (2000) 9739.10.1021/ja0018320Search in Google Scholar
11. M. I. B. Tavares, C. M. G. de Souza, J. Appl. Polym. Sci. 90 (2003) 3872.10.1002/app.13108Search in Google Scholar
12. P. M. Aguiar, M. J. Katz, D. B. Leznoff, S. Kroeker, Phys. Chem. Chem. Phys. 11 (2009) 6925.10.1039/b907747bSearch in Google Scholar PubMed
13. P. Palmas, S. Ilas, E. Girard, Magn. Reson. Chem. 49 (2011) 788.10.1002/mrc.2834Search in Google Scholar PubMed
14. A. Höhener, L. Müller, R. R. Ernst, Mol. Phys. 38 (1979) 909.10.1080/00268977900102131Search in Google Scholar
15. M. Giese, J. C. De Witt, K. E. Shopsowitz, A. P. Manning, R. Y. Dong, C. A. Michal, W. Y. Hamad, M. J. MacLachlan, ACS Appl. Mater. Interfaces 5 (2013) 6854.10.1021/am402266zSearch in Google Scholar PubMed
16. A. P. Manning, M. Giese, A. S. Terpstra, M. J. MacLachlan, W. Y. Hamad, R. Y. Dong, C. A. Michal, Magn. Reson. Chem. 52 (2014) 532.10.1002/mrc.4101Search in Google Scholar PubMed
17. D. Demus, H. Zaschke, Flüssige kristalle in Tabellen II, Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, (1984).Search in Google Scholar
18. A. R. Kortan, H. V. Kanel, R. J. Birgeneau, J. D. Litster, Phys. Rev. Lett. 47 (1981) 1206.10.1103/PhysRevLett.47.1206Search in Google Scholar
19. P. E. Cladis, Liq. Cryst. 24 (1998) 15.10.1080/026782998207532Search in Google Scholar
20. S. V. Dvinskikh, I. Furo, Phys. Rev. E 86 (2012) 031704.10.1103/PhysRevE.86.031704Search in Google Scholar PubMed
21. P. Bertani, J. Raya, B. Bechinger, Solid State Nucl. Magn. Reson. 61–62 (2014) 15.10.1016/j.ssnmr.2014.03.003Search in Google Scholar PubMed
22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.; Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, ‘Gaussian 09, Revision A.02’, Wallingford CT: Gaussian, Inc. (2009).Search in Google Scholar
23. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar
24. J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 104 (1996) 5497.10.1063/1.471789Search in Google Scholar
25. R. Ditchfield, Mol. Phys. 27 (1974) 789.10.1080/00268977400100711Search in Google Scholar
26. T. Van Voorhis, G. E. Scuseria, J. Chem. Phys. 109 (1998) 400.10.1063/1.476577Search in Google Scholar
27. B. M. Fung, A. K. Khitrin, K. Ermolaev, J. Magn. Reson. 142 (2000) 97.10.1006/jmre.1999.1896Search in Google Scholar PubMed
28. A. E. Bennett, C. M. Rienstra, M. Auger, K. V. Lakshmi, R. G. Griffin, J. Chem. Phys. 103 (1995) 6951.10.1063/1.470372Search in Google Scholar
29. S. V. Dvinskikh, I. Furó, Russ. Chem. Rev. 75 (2006) 497.10.1070/RC2006v075n06ABEH003635Search in Google Scholar
30. S. V. Dvinskikh, I. Furó, H. Zimmermann, A. Maliniak, Phys. Rev. E 65 (2002) 061701.10.1103/PhysRevE.65.061701Search in Google Scholar PubMed
31. J. W. Emsley, P. Lesot, G. De Luca, A. Lesage, D. Merlet, G. Pileio, Liq. Cryst. 35 (2008) 443.10.1080/02678290801935887Search in Google Scholar
32. E. D. Gerts, A. V. Komolkin, V. A. Burmistrov, V. V. Alexandriysky, S. V. Dvinskikh, J. Chem. Phys. 141 (2014) 074503.10.1063/1.4892877Search in Google Scholar PubMed
33. J. W. Emsley, Nuclear magnetic resonance of liquid crystals, Dordrecht: Reidel (1985).10.1007/978-94-009-6517-1Search in Google Scholar
34. S. V. Dvinskikh, D. Sandström, H. Zimmermann, A. Maliniak, 13C NMR studies of columnar liquid crystals, in New Research on Magnetic Resonance, ed. by B. C. Castleman, New York: Nova Science Publisher (2007), p. 189.Search in Google Scholar
35. M. Sardashti, G. E. Maciel, J. Phys. Chem. 92 (1988) 4620.10.1021/j100327a013Search in Google Scholar
36. R. G. Horn, J. Phys. (France) 39 (1978) 105.10.1051/jphys:01978003901010500Search in Google Scholar
37. I. Haller, Prog. Solid State Chem. 10 (1975) 103.10.1016/0079-6786(75)90008-4Search in Google Scholar
38. M. J. Duer, Introduction to solid-state NMR spectroscopy, Oxford: Blackwell, 2005.Search in Google Scholar
39. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2 (1987) S1.10.1039/p298700000s1Search in Google Scholar
40. N. J. D. Lucas, Mol. Phys. 22 (1971) 147.10.1080/00268977100102411Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency