Abstract
The use of various NMR techniques allows to demonstrate the aggregation processes of β-glycyrrhizic acid (GA) in water/methanol (4:1, v:v) mixture with solution pH≤5. The micelle formation was monitored by measuring T2 relaxation and diffusion of GA. The model of gelation from micelles was suggested. It was shown that NMR chemical shifts of the protons of GA glucuronic moiety are sensitive to solution pH and not sensitive to GA concentration changes. At the same time the protons of triterpene moiety are sensitive to the nearest environment during the GA aggregation, and micelles are formed by hydrophobic interaction between the triterpene moieties of GA.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday.
Acknowledgements
This publication is supported by grant 15-04-02538 from the Russian Foundation for Basic Research.
References
1. G. A. Tolstikov, L. A. Baltina, E. E. Schults, A. G. Pokrovsky, Bioorg. Chem. 23 (1997) 691.Search in Google Scholar
2. C. Fiore, M. Eisenhut, E. Ragazzi, G. Zanchin, D. Armanini, J. Ethnopharmacol. 99 (2005) 317.10.1016/j.jep.2005.04.015Search in Google Scholar PubMed PubMed Central
3. A. Otsuka, Y. Yonezawa, K. Iba, T. Tatsumi, H. Sunada, Yakugaku Zasshi 96 (1976) 203.10.1248/yakushi1947.96.2_203Search in Google Scholar PubMed
4. M. Kondo, H. Minamino, G. Okuyama, K. Honda, H. Nagasawa, Y. Otani, J. Soc. Cosmet. Chem. 37 (1986) 177.Search in Google Scholar
5. K. Matsuoka, R. Miyajima, Y. Ishida, S. Karasawa, T. Yoshimura, Colloid Surface A 500 (2016) 112.10.1016/j.colsurfa.2016.04.032Search in Google Scholar
6. N. E. Polyakov, T. V. Leshina, Open Conf. Proc. J. 2 (2011) 64.10.2174/2210289201102010064Search in Google Scholar
7. L. Shi, C. Tang, Ch. Yin, Biomaterials 33 (2012) 7594.10.1016/j.biomaterials.2012.06.072Search in Google Scholar PubMed
8. G. A. Tolstikov, Yu. I. Murinov, L. A. Baltina, M. Yu. Saitova, F. Ch. Zaurdi, V. A. Davydova, D. N. Lazareva, Pharm. Chem. J. 25 (1991) 197.10.1007/BF00772022Search in Google Scholar
9. Y. Yonezawa, A. Otsuka, Yakugaku Zasshi 101 (1981) 829.10.1248/yakushi1947.101.9_829Search in Google Scholar
10. Yu. I. Ragino, V. A. Vavilin, N. F. Salakhutdinov, S. I. Makarova, E. M. Stakhneva, O. G. Safronova, Yu. P. Nikitin, G. A. Tolstikov, Bull. Exp. Biol. Med. 145 (2008) 317.10.1007/s10517-008-0079-5Search in Google Scholar PubMed
11. V. A. Vavilin, N. F. Salakhutdinov, Yu. I. Ragino, N. E. Polyakov, M. B. Taraban, T. V. Leshina, E. M. Stakhneva, V. V. Lyakhovich, Yu. P. Nikitin, G. A. Tolstikov, Biochem. (Mosc.) Suppl. Ser. B Biomedical Chem. 2 (2008) 373.10.1134/S1990750808040070Search in Google Scholar
12. M. Stojančević, N. Pavlović, S. Goločorbin-Kon, M. Mikov, Front. Life Sci. 7 (2013) 112.10.1080/21553769.2013.879925Search in Google Scholar
13. N. E. Polyakov, T. V. Leshina, N. F. Salakhutdinov, L. D. Kispert, J. Phys. Chem. B 110 (2006) 6991.10.1021/jp056038lSearch in Google Scholar PubMed
14. V. S. Kornievskaya, A. I. Kruppa, T. V. Leshina, J. Incl. Phenom. Macrocycl. Chem. 60 (2008) 123.10.1007/s10847-007-9360-xSearch in Google Scholar
15. E. Tykarska, Z. Dutkiewicz, D. Baranowski, Z. Gdaniec, M. Gdaniec, Cryst. Growth Des. 14 (2014) 5871.10.1021/cg5010962Search in Google Scholar
16. I. A. Muraviev, G. S. Bashura, T. G. Krasova, Pharmacy 23 (1974) 14 (in Russian).Search in Google Scholar
17. H. Yoshioka, K. Honda, M. Kondo, J. Colloid Interface Sci. 93 (1983) 540.10.1016/0021-9797(83)90438-1Search in Google Scholar
18. E. Tykarska, S. Sobiak, M. Gdaniec, Cryst. Growth Des. 12 (2012) 2133.10.1021/cg300160cSearch in Google Scholar
19. V. S. Kornievskaya, A. I. Kruppa, N. E. Polyakov, T. V. Leshina, J. Phys. Chem. B 111 (2007) 11447.10.1021/jp0739770Search in Google Scholar
20. J. Spěváček, Curr. Opin. Colloid Interface Sci. 14 (2009) 184.10.1016/j.cocis.2008.10.003Search in Google Scholar
21. M. V. Badiger, P. R. Rajamohanan, M. G. Kulkarni, S. Ganapathy, R. A. Mashelkar, Macromolecules 24 (1991) 106.10.1021/ma00001a017Search in Google Scholar
22. E. Díez-Peña, I. Quijada-Garrido, J. M. Barrales-Rienda, M. Wilhelm, H. W. Spiess, Macromol. Chem. Phys 203 (2002) 491.10.1002/1521-3935(20020201)203:3<491::AID-MACP491>3.0.CO;2-1Search in Google Scholar
23. M. V. Popova, Y. S. Tchernyshev, D. Michel, Langmuir 20 (2004) 632.10.1021/la035465sSearch in Google Scholar
24. B. Jönsson, B. Lindman, K. Holmberg, B. Kronberg, Surfactants and polymers in aqueous solution, Wiley, Chichester, UK, 1998, p. 438.Search in Google Scholar
25. Y. Hanzhen, D. Youru, Zh. Sui, Y. Jiayong, Sci. China (Series A), 42 (1999) 319.10.1007/BF02879067Search in Google Scholar
26. M. V. Zelikman, A. V. Kim, N. N. Medvedev, O. Yu. Selyutina, N. E. Polyakov, J. Struct. Chem. 56 (2015) 67.10.1134/S0022476615010102Search in Google Scholar
27. V. N. Gusakov, V. N. Maistrenko, P. P. Safiullin, Russ. J. Gen. Chem. 71 (2001) 1307.10.1023/A:1013297601183Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency