Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
-
Dzhalil F. Khabibulin
, Evgeniy Papulovskiy , Andrey S. Andreev , Aleksandr A. Shubin , Alexander M. Volodin , Galina A. Zenkovets , Dmitriy A. Yatsenko , Sergey V. Tsybulya and Olga B. Lapina
Abstract
For the first time, the detailed structure of χ-Al2O3 and η-Al2O3 surface has been established by implementing the NMR crystallography approach. The surface of η-Al2O3 has been demonstrated to be formed primarily by the (111) facets, while the χ-Al2O3 surface is a combination of (111) and (110) facets. This observation supports the block model of aluminum oxides previously proposed by Tsybulya and Kryukova [S. V. Tsybulya, G. N. Kryukova, Phys. Rev. B 77 (2008) 024112.]. The additional terminal OH groups, observed experimentally and not contributing to (111) and (110) theoretical calculations, are considered to be bonded to the tetrahedral aluminum sites. Their origin is related to the junctions of crystallographic faces of spinel building blocks, being a part of discussed model. Higher content of these terminal OH groups in χ-Al2O3 is a result of more junctions in the case of its more mosaic structure compared to η-Al2O3.
Dedicated to: Kev Salikhov on the occasion of his 80th birthday.
Funding source: Russian Science Foundation
Award Identifier / Grant number: 14-23-00037
Funding statement: Authors gratefully acknowledge the Russian Science Foundation (RSF grant 14-23-00037 “Design of functional nanomaterials: phenomena of self-assembly of 3D nanostructures and nanocomposites in oxide systems”) for the financial support.
Acknowledgement
Authors gratefully acknowledge the Russian Science Foundation (RSF grant 14-23-00037 “Design of functional nanomaterials: phenomena of self-assembly of 3D nanostructures and nanocomposites in oxide systems”) for the financial support.
References
1. B. C. Lippens, J. J. Steggerda (Ed.), Physical and Chemical Aspects of Adsorbents and Catalysts, Academic Press Inc., New York (1970).Search in Google Scholar
2. Z. M. George, Phosphorous Sulfur Relat. Elem. 1 (1976) 315.10.1080/03086647608073341Search in Google Scholar
3. J. H. Gary, G. E. Handwerk, Petroleum Refining. Nechnology and Economics, 2nd ed. Marcel Dekker, Inc, New York (1984).Search in Google Scholar
4. A. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107 (2007) 1692.10.1021/cr050972vSearch in Google Scholar
5. L. D. (LeRoy D. . Hart, E. Lense, Alumina Chemicals: Science and Technology Handbook, American Ceramic Society, New York (1990).Search in Google Scholar
6. G. Paglia, C. E. Buckley, A. L. Rohl, B. A. Hunter, R. D. Hart, J. V. Hanna, L. T. Byrne, Phys. Rev. B 68 (2003) 144110.10.1103/PhysRevB.68.144110Search in Google Scholar
7. R. Lizárraga, E. Holmström, S. C. Parker, C. Arrouvel, Phys. Rev. B 83 (2011) 094201.10.1103/PhysRevB.83.094201Search in Google Scholar
8. C. Pecharroman, I. Sobrados, J. E. Iglesias, T. Gonzalez-Carreno, J. Sanz, C. Pecharromán, I. Sobrados, J. E. Iglesias, T. González-Carreño, J. Sanz, J. Phys. Chem. B 103 (1999) 6160.10.1021/jp983316qSearch in Google Scholar
9. D. Müller, W. Gessner, A. Samoson, E. Lippmaa, G. Scheler, J. Chem. Soc. Dalt. Trans. (1986) 1277.10.1039/DT9860001277Search in Google Scholar
10. M.-H. Lee, C.-F. Cheng, V. Heine, J. Klinowski, Chem. Phys. Lett. 265(1997) 673.10.1016/S0009-2614(96)01492-3Search in Google Scholar
11. J. J. Fitzgerald, In ACS Symp. Ser. Vol. 717. Solid-State NMR Spectrosc. Inorg. Mater., edited by J. J. Fitzgerald, American Chemical Society (1999), P. 182–226.10.1021/bk-1999-0717.ch005Search in Google Scholar
12. D. F. Khabibulin, A. M. Volodin, O. B. Lapina, J. Struct. Chem. 57 (2016) 354.10.1134/S0022476616020165Search in Google Scholar
13. C. S. John, N. C. Alma, G. R. Hays, Appl. Catal. 6 (1983) 341.10.1016/0166-9834(83)80106-7Search in Google Scholar
14. R. H. Meinhold, R. C. T. Slade, R. H. Newman, Appl. Magn. Reson. 4 (1993) 121.10.1007/BF03162559Search in Google Scholar
15. G. Kunath-Fandrei, T. J. Bastow, J. S. Hall, C. Jaeger, M. E. Smith, J. Phys. Chem. 99 (1995) 15138.10.1021/j100041a033Search in Google Scholar
16. S. V. Tsybulya, G. N. Kryukova, Phys. Rev. B 77 (2008) 024112.10.1103/PhysRevB.77.024112Search in Google Scholar
17. L. Kovarik, M. Bowden, A. Genc, J. Szanyi, C. H. F. Peden, J. H. Kwak, J. Phys. Chem. C 118 (2014) 18051.10.1021/jp500051jSearch in Google Scholar
18. M. Taoufik, K. C. Szeto, N. Merle, I. Del Rosal, L. Maron, J. Trébosc, G. Tricot, R. M. Gauvin, L. Delevoye, Chemistry 20 (2014) 4038.10.1002/chem.201304883Search in Google Scholar
19. D. Lee, N. T. Duong, O. Lafon, G. De Paëpe, J. Phys. Chem. C 118 (2014) 25065.10.1021/jp508009xSearch in Google Scholar
20. G. Busca, Catal. Today 226 (2014) 2.10.1016/j.cattod.2013.08.003Search in Google Scholar
21. J. B. Peri, J. Phys. Chem. 69 (1965) 220.10.1021/j100885a033Search in Google Scholar
22. A. A. Tsyganenko, V. N. Filimonov, J. Mol. Struct. 19 (1973) 579.10.1016/0022-2860(73)85136-1Search in Google Scholar
23. C. Morterra, A. Chiorino, G. Ghiotti, E. Garrone, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75 (1979) 271.10.1039/f19797500271Search in Google Scholar
24. H. Knözinger, P. Ratnasamy, Catal. Rev. Sci. Eng. 17 (1978) 31.10.1080/03602457808080878Search in Google Scholar
25. R. K. Harris, R. E. Wasylishen, M. J. Duer, NMR Crystallography, 1st ed. Wiley (2009).Search in Google Scholar
26. X. Filip, C. Filip, Solid State Nucl. Magn. Reson. 65 (2015) 21.10.1016/j.ssnmr.2014.10.006Search in Google Scholar PubMed
27. C. Martineau, J. Senker, F. Taulelle, Annu. Reports NMR Spectrosc. 82 (2014) 1.10.1016/B978-0-12-800184-4.00001-1Search in Google Scholar
28. V. R. Seymour, E. C. V. Eschenroeder, P. A. Wright, S. E. Ashbrook, Solid State Nucl. Magn. Reson. 65 (2015) 64.10.1016/j.ssnmr.2014.10.007Search in Google Scholar
29. R. Wischert, P. Florian, C. Copéret, D. Massiot, P. Sautet, J. Phys. Chem. C 118 (2014) 15292.10.1021/jp503277mSearch in Google Scholar
30. V. M. Mastikhin, I. L. Mudrakovsky, A. V. Nosov, Prog. Nucl. Magn. Reson. Spectrosc. 23 (1991) 259.10.1016/0079-6565(91)80006-NSearch in Google Scholar
31. A. M. Volodin, A. F. Bedilo, I. V. Mishakov, V. I. Zaikovskii, A. A. Vedyagin, R. M. Kenzhin, V. O. Stoyanovskii, K. S. Golohvast, Nanotechnologies Russ. 9 (2014) 700.10.1134/S1995078014060184Search in Google Scholar
32. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Zeitschrift Für Krist. 220 (2005) 567.10.1524/zkri.220.5.567.65075Search in Google Scholar
33. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.10.1103/PhysRevB.46.6671Search in Google Scholar
34. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.10.1103/PhysRevB.41.7892Search in Google Scholar PubMed
35. J. Yates, C. Pickard, F. Mauri, Phys. Rev. B 76 (2007) 024401.10.1103/PhysRevB.76.024401Search in Google Scholar
36. B. G. Pfrommer, M. Côté, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131 (1997) 233.10.1006/jcph.1996.5612Search in Google Scholar
37. C. J. Pickard, F. Mauri, Phys. Rev. B 63 (2001) 245101.10.1103/PhysRevB.63.245101Search in Google Scholar
38. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar
39. A. R. Ferreira, M. J. F. Martins, E. Konstantinova, R. B. Capaz, W. F. Souza, S. S. X. Chiaro, A. A. Leitão, J. Solid State Chem. 184 (2011) 1105.10.1016/j.jssc.2011.03.016Search in Google Scholar
40. M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulhoat, J. Catal. 211 (2002) 1.10.1016/S0021-9517(02)93741-3Search in Google Scholar
41. M. Digne, J. Catal. 226 (2004) 54.10.1016/j.jcat.2004.04.020Search in Google Scholar
42. A. R. Ferreira, E. Küçükbenli, S. de Gironcoli, W. F. Souza, S. S. X. Chiaro, E. Konstantinova, A. A. Leitão, Chem. Phys. 423 (2013) 62.10.1016/j.chemphys.2013.06.024Search in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/zpch-2016-0822) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency