Startseite An aminosilyl-functionalized zincocene
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An aminosilyl-functionalized zincocene

  • Jessica Lambert , Bernd Morgenstern und André Schäfer ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A (pyrrolidinyldimethylsilyl)tetramethyl zincocene was obtained by salt elimination reaction of the corresponding sodium cyclopentadienide with zinc(II) chloride and was characterized in solution and in the solid state, including the determination of its crystal structure. Furthermore, the zinc center was shown to exhibit Lewis-acidic character by coordination of an N-heterocyclic carbene.


Corresponding author: André Schäfer, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Saarland, Germany, E-mail:

Acknowledgements

Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and the German Science Foundation (INST256/506-1).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Support and funding by the Deutsche Forschungsgemeinschaft (DFG; Emmy Noether programme SCHA1915/3-2) is gratefully acknowledged.

  7. Data availability: Not applicable.

References

1. Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039–1040; https://doi.org/10.1038/1681039b0.Suche in Google Scholar

2. Miller, S. A.; Tebboth, J. A.; Tremaine, J. F. J. Chem. Soc. 1952, 632–635; https://doi.org/10.1039/jr9520000632.Suche in Google Scholar

3. Laszlo, P.; Hoffmann, R. Angew. Chem. Int. Ed. 2000, 39, 123–124. https://doi.org/10.1002/(sici)1521-3773(20000103)39:1<123::aid-anie123>3.3.co;2-q.10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.3.CO;2-QSuche in Google Scholar

4. Pauson, P. L. J. Organomet. Chem. 2001, 637–639, 3–6; https://doi.org/10.1016/s0022-328x(01)01126-3.Suche in Google Scholar

5. Werner, H. Angew. Chem. Int. Ed. 2012, 51, 6052–6058; https://doi.org/10.1002/anie.201201598.Suche in Google Scholar

6. Fischer, E. O.; Hofmann, H. P.; Treiber, A. Z. Naturforsch. B 1959, 14b, 599–600.10.1515/znb-1959-8-922Suche in Google Scholar

7. Budzelaar, P. H. M.; Boersma, J.; van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. M. J. Organomet. Chem. 1985, 281, 123–130; https://doi.org/10.1016/0022-328x(85)87100-x.Suche in Google Scholar

8. Haaland, A.; Samdal, S.; Tverdova, N. V.; Girichev, G. V.; Giricheva, N. I.; Shlykov, S. A.; Garkusha, O. G.; Lokshin, B. V. J. Organomet. Chem. 2003, 684, 351–358; https://doi.org/10.1016/s0022-328x(03)00770-8.Suche in Google Scholar

9. Fischer, B.; Wijkens, P.; Boersma, J.; van Koten, G.; Smeets, W. J. J.; Spek, A. L.; Budzelaar, P. H. M. J. Organomet. Chem. 1989, 376, 223–233; https://doi.org/10.1016/0022-328x(89)85132-0.Suche in Google Scholar

10. Fernández, R.; Grirrane, A.; Resa, I.; Rodríguez, A.; Carmona, E.; Álvarez, E.; Gutiérrez-Puebla, E.; Monge, Á.; López del Amo, J. M.; Limbach, H.-H.; Lledós, A.; Maseras, F.; del Río, D. Chem. Eur. J. 2009, 15, 924–935; https://doi.org/10.1002/chem.200801917.Suche in Google Scholar

11. Burkey, D. J.; Hanusa, T. P. J. Organomet. Chem. 1996, 512, 165–173; https://doi.org/10.1016/0022-328x(95)05952-l.Suche in Google Scholar

12. Fernández, R.; Resa, I.; del Río, D.; Carmona, E.; Gutiérrez-Puebla, E.; Monge, Á. Organometallics 2003, 22, 381–383; https://doi.org/10.1021/om021018g.Suche in Google Scholar

13. Chilleck, M. A.; Braun, T.; Herrmann, R.; Braun, B. Organometallics 2013, 32, 1067–1074; https://doi.org/10.1021/om301181e.Suche in Google Scholar

14. Chilleck, M. A.; Braun, T.; Braun, B.; Mebs, S. Organometallics 2014, 33, 551–560; https://doi.org/10.1021/om401076g.Suche in Google Scholar

15. Nugent, K. W.; Beattie, J. K.; Hambley, T. W.; Snow, M. R. Aust. J. Chem. 1984, 37, 1601–1606; https://doi.org/10.1071/ch9841601.Suche in Google Scholar

16. Jochmann, P.; Stephan, D. W. Chem. Eur. J. 2014, 20, 8370–8378; https://doi.org/10.1002/chem.201402875.Suche in Google Scholar PubMed

17. Mohamad, M.; Lambert, J.; Wirtz, L.; Morgenstern, B.; Schäfer, A. Z. Naturforsch. 2023, 78b, 363–368.10.1515/znb-2023-0012Suche in Google Scholar

18. Gridnev, I. D. Coord. Chem. Rev. 2008, 252, 1798–1818; https://doi.org/10.1016/j.ccr.2007.10.021.Suche in Google Scholar

19. Fisher, B.; van Mier, G. P. M.; Boersma, J.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 1987, 322, C37–C40.10.1016/S0022-328X(00)99371-9Suche in Google Scholar

20. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176–2179; https://doi.org/10.1021/om100106e.Suche in Google Scholar

21. Kuhn, N.; Kratz, T. Synthesis 1993, 1993, 561–562; https://doi.org/10.1055/s-1993-25902.Suche in Google Scholar

22. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

23. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Suche in Google Scholar

24. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Suche in Google Scholar

Received: 2024-10-23
Accepted: 2024-11-22
Published Online: 2024-12-23
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0095/html
Button zum nach oben scrollen