Home An aminosilyl-functionalized zincocene
Article
Licensed
Unlicensed Requires Authentication

An aminosilyl-functionalized zincocene

  • Jessica Lambert , Bernd Morgenstern and André Schäfer ORCID logo EMAIL logo
Published/Copyright: December 23, 2024
Become an author with De Gruyter Brill

Abstract

A (pyrrolidinyldimethylsilyl)tetramethyl zincocene was obtained by salt elimination reaction of the corresponding sodium cyclopentadienide with zinc(II) chloride and was characterized in solution and in the solid state, including the determination of its crystal structure. Furthermore, the zinc center was shown to exhibit Lewis-acidic character by coordination of an N-heterocyclic carbene.


Corresponding author: André Schäfer, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Saarland, Germany, E-mail:

Acknowledgements

Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and the German Science Foundation (INST256/506-1).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Support and funding by the Deutsche Forschungsgemeinschaft (DFG; Emmy Noether programme SCHA1915/3-2) is gratefully acknowledged.

  7. Data availability: Not applicable.

References

1. Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039–1040; https://doi.org/10.1038/1681039b0.Search in Google Scholar

2. Miller, S. A.; Tebboth, J. A.; Tremaine, J. F. J. Chem. Soc. 1952, 632–635; https://doi.org/10.1039/jr9520000632.Search in Google Scholar

3. Laszlo, P.; Hoffmann, R. Angew. Chem. Int. Ed. 2000, 39, 123–124. https://doi.org/10.1002/(sici)1521-3773(20000103)39:1<123::aid-anie123>3.3.co;2-q.10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.3.CO;2-QSearch in Google Scholar

4. Pauson, P. L. J. Organomet. Chem. 2001, 637–639, 3–6; https://doi.org/10.1016/s0022-328x(01)01126-3.Search in Google Scholar

5. Werner, H. Angew. Chem. Int. Ed. 2012, 51, 6052–6058; https://doi.org/10.1002/anie.201201598.Search in Google Scholar

6. Fischer, E. O.; Hofmann, H. P.; Treiber, A. Z. Naturforsch. B 1959, 14b, 599–600.10.1515/znb-1959-8-922Search in Google Scholar

7. Budzelaar, P. H. M.; Boersma, J.; van der Kerk, G. J. M.; Spek, A. L.; Duisenberg, A. J. M. J. Organomet. Chem. 1985, 281, 123–130; https://doi.org/10.1016/0022-328x(85)87100-x.Search in Google Scholar

8. Haaland, A.; Samdal, S.; Tverdova, N. V.; Girichev, G. V.; Giricheva, N. I.; Shlykov, S. A.; Garkusha, O. G.; Lokshin, B. V. J. Organomet. Chem. 2003, 684, 351–358; https://doi.org/10.1016/s0022-328x(03)00770-8.Search in Google Scholar

9. Fischer, B.; Wijkens, P.; Boersma, J.; van Koten, G.; Smeets, W. J. J.; Spek, A. L.; Budzelaar, P. H. M. J. Organomet. Chem. 1989, 376, 223–233; https://doi.org/10.1016/0022-328x(89)85132-0.Search in Google Scholar

10. Fernández, R.; Grirrane, A.; Resa, I.; Rodríguez, A.; Carmona, E.; Álvarez, E.; Gutiérrez-Puebla, E.; Monge, Á.; López del Amo, J. M.; Limbach, H.-H.; Lledós, A.; Maseras, F.; del Río, D. Chem. Eur. J. 2009, 15, 924–935; https://doi.org/10.1002/chem.200801917.Search in Google Scholar

11. Burkey, D. J.; Hanusa, T. P. J. Organomet. Chem. 1996, 512, 165–173; https://doi.org/10.1016/0022-328x(95)05952-l.Search in Google Scholar

12. Fernández, R.; Resa, I.; del Río, D.; Carmona, E.; Gutiérrez-Puebla, E.; Monge, Á. Organometallics 2003, 22, 381–383; https://doi.org/10.1021/om021018g.Search in Google Scholar

13. Chilleck, M. A.; Braun, T.; Herrmann, R.; Braun, B. Organometallics 2013, 32, 1067–1074; https://doi.org/10.1021/om301181e.Search in Google Scholar

14. Chilleck, M. A.; Braun, T.; Braun, B.; Mebs, S. Organometallics 2014, 33, 551–560; https://doi.org/10.1021/om401076g.Search in Google Scholar

15. Nugent, K. W.; Beattie, J. K.; Hambley, T. W.; Snow, M. R. Aust. J. Chem. 1984, 37, 1601–1606; https://doi.org/10.1071/ch9841601.Search in Google Scholar

16. Jochmann, P.; Stephan, D. W. Chem. Eur. J. 2014, 20, 8370–8378; https://doi.org/10.1002/chem.201402875.Search in Google Scholar PubMed

17. Mohamad, M.; Lambert, J.; Wirtz, L.; Morgenstern, B.; Schäfer, A. Z. Naturforsch. 2023, 78b, 363–368.10.1515/znb-2023-0012Search in Google Scholar

18. Gridnev, I. D. Coord. Chem. Rev. 2008, 252, 1798–1818; https://doi.org/10.1016/j.ccr.2007.10.021.Search in Google Scholar

19. Fisher, B.; van Mier, G. P. M.; Boersma, J.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 1987, 322, C37–C40.10.1016/S0022-328X(00)99371-9Search in Google Scholar

20. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176–2179; https://doi.org/10.1021/om100106e.Search in Google Scholar

21. Kuhn, N.; Kratz, T. Synthesis 1993, 1993, 561–562; https://doi.org/10.1055/s-1993-25902.Search in Google Scholar

22. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

23. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

24. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar

Received: 2024-10-23
Accepted: 2024-11-22
Published Online: 2024-12-23
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0095/html
Scroll to top button