Abstract
Gas chromatography can be based on very different types of stationary phase materials such as porous crystalline, polymeric or even liquid materials. These materials are not supposed to change significantly when brought into contact with the analytes to be investigated. Analytes may overload the stationary phase which changes the interaction between analyte and stationary phase causing often tailing or fronting in the detected peaks. In contrast to these unintended effects, new materials such as flexible porous crystalline coordination polymers can be utilized as stationary phase allowing the crystal structure to undergo transformation induced by the analytes. Depending on the analyte concentration, even a complete collaps of the porous structure can be achieved. The generic theoretical investigation presented will address the possible effects caused by state-dependent transformations of stationary phases. A first experimental realization of such a system with a well-known metal-organic framework (MOF) demonstrating unconventional chromatographic behavior was also generated and investigated.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Gu, Z.-Y.; Yang, C.-X.; Chang, N.; Yan, X.-P. Metal-Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation. Acc. Chem. Res. 2012, 45 (5), 734–745. https://doi.org/10.1021/ar2002599.Search in Google Scholar PubMed
2. Yusuf, K.; Aqel, A.; AlOthman, Z. Metal-Organic Frameworks in Chromatography. J. Chromatogr. A 2014, 1348, 1–16. https://doi.org/10.1016/j.chroma.2014.04.095.Search in Google Scholar PubMed
3. Duerinck, T.; Denayer, J. F. M. Metal-Organic Frameworks as Stationary Phases for Chiral Chromatographic and Membrane Separations. Chem. Eng. Sci. 2015, 124, 179–187. https://doi.org/10.1016/j.ces.2014.10.012.Search in Google Scholar
4. Wang, X.; Ye, N. Recent Advances in Metal-Organic Frameworks and Covalent Organic Frameworks for Sample Preparation and Chromatographic Analysis. Electrophoresis 2017, 38 (24), 3059–3078. https://doi.org/10.1002/elps.201700248.Search in Google Scholar PubMed
5. Chang, N.; Gu, Z.-Y.; Yan, X.-P. Zeolitic Imidazolate Framework-8 Nanocrystal Coated Capillary for Molecular Sieving of Branched Alkanes from Linear Alkanes along with High-Resolution Chromatographic Separation of Linear Alkanes. J. Am. Chem. Soc. 2010, 132, 13645–13647. https://doi.org/10.1021/ja1058229.Search in Google Scholar PubMed
6. Münch, A.; Seidel, J.; Obst, A.; Weber, E.; Mertens, F. O. High-Separation Performance of Chromatographic Capillaries Coated with MOF-5 by the Controlled SBU Approach. Chem. Eur. J. 2011, 17 (39), 10958–10964. https://doi.org/10.1002/chem.201100642.Search in Google Scholar PubMed
7. Böhle, T.; Mertens, F. O. Two Isoreticular Pillared-Layer Frameworks as Stationary Phases for Gas Chromatographic Applications – Unusual Peak Broadening in Size Exclusion Chromatography, Determination of Thermodynamic and Kinetic Data. Microporous Mesoporous Mater. 2015, 216, 82–91. https://doi.org/10.1016/j.micromeso.2015.03.019.Search in Google Scholar
8. Xie, S.-M.; Zhang, Z.-J.; Wang, Z.-Y.; Yuan, L.-M. Chiral Metal-Organic Frameworks for High-Resolution Gas Chromatographic Separations. J. Am. Chem. Soc. 2011, 133, 11892–11895. https://doi.org/10.1021/ja2044453.Search in Google Scholar PubMed
9. Münch, A.; Mertens, F. O. The Lewis Acidic and Basic Character of the Internal HKUST-1 Surface Determined by Inverse Gas Chromatography. CrystEngComm 2015, 17, 438–447. https://doi.org/10.1039/c4ce01327a.Search in Google Scholar
10. Münch, A.; Mertens, F. O. Investigation of N-Alkane Adsorption on HKUST-1 and Determination of Intrinsic Interfacial Energy Contributions. Microporous Mesoporous Mater. 2018, 270, 180–188. https://doi.org/10.1016/j.micromeso.2018.05.012.Search in Google Scholar
11. Henke, S.; Schneemann, A.; Wütscher, A.; Fischer, R. A. Directing the Breathing Behavior of Pillared-Layered Metal-Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. J. Am. Chem. Soc. 2012, 134, 9464–9474. https://doi.org/10.1021/ja302991b.Search in Google Scholar PubMed
12. Golay, M. Theory of Chromatography in Open and Coated Tubular Columns with Round and Rectengular Cross-Sections. In Gas Chromatography 1958; Desty, D. H., Ed.; Butterworths Sci. Publ.: London, 1958.Search in Google Scholar
13. Pethö, A.; Kühne, J. Über das dynamische Verhalten gaschromatographischer Vorgänge. In Handbuch der Gaschromatographie; Leibnitz, E.; Struppe, G., Eds.; Akademische Verlagsgesellschaft Geest & Portig KG: Leipzig, 1984.10.1515/9783112575727-004Search in Google Scholar
14. Schleicher, E. Untersuchung kinetischer Effekte von Breathing Pillared MOFs mittels inverser Gaschromatographie. Bachelor Thesis, Technische Universität Bergakademie Freiberg, 2014.Search in Google Scholar
15. Wu, Q.; Wang, R.; Chen, X.; Gosh, R. Temperature-Responsive Membrane for Hydrophobic Interaction Based Chromatographic Separation of Proteins in Bind-And-Elute Mode. J. Membr. Sci. 2014, 471, 56–64. https://doi.org/10.1016/j.memsci.2014.07.072.Search in Google Scholar
16. Scott, A.; Thurbide, K. B. Retention Characteristics of a pH Tunable Water Stationary Phase in Supercritical Fluid Chromatography. J. Chromatogr. Sci. 2017, 55 (1), 82–89. https://doi.org/10.1093/chromsci/bmw153.Search in Google Scholar PubMed
17. Ding, P.; Chang, B.-S.; Qing, G.-Y.; Sun, T.-L. New Approach for Chiral Separation: from Polysaccharide-Based Materials to Chirality-Responsive Polymers. Sci. China: Chem. 2014, 57 (11), 1492–1506. https://doi.org/10.1007/s11426-014-5206-8.Search in Google Scholar
18. Takahashi, K.; Fukano, M.; Yoshida, S.; Ogawa, M.; Kusu, F. Development of an Electric Charge-Tunable Micro-Column for Capillary Liquid Chromatography. Anal. Sci. 2012, 26, 853–859. https://doi.org/10.2116/analsci.28.853.Search in Google Scholar PubMed
19. Yakes, B.; Keller, D.; Porter, M. Electrochemically Modulated Liquid Chromatographic Separation of Triazines and the Effect of pH on Retention. J. Chromatogr. A 2010, 1217, 4395–4401. https://doi.org/10.1016/j.chroma.2010.04.031.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2024-0087).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm