Home K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
Article
Licensed
Unlicensed Requires Authentication

K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate

  • Alexandra Friedly and Thomas Schleid EMAIL logo
Published/Copyright: February 14, 2025
Become an author with De Gruyter Brill

Abstract

By dissolving triethylammonium dodecahydro-carba-closo-dodecaborate, mercury(II) acetate and potassium cyanide in an equimolar ratio in acetonitrile and subsequent isothermal evaporation of this solution, the new pseudo-double salt K[Hg(CN)2][H3CCOO] could be obtained. K[Hg(CN)2][H3CCOO] crystallizes monoclinically in the space group P21/c with the lattice parameters a = 954.25(6), b = 905.46(5), c = 904.12(5) pm and β = 90.697(3)° for Z = 4. The Hg2+ cations and the (CN) anions are arranged in the crystal structure as quasi-linear molecular N≡C–Hg–C≡N units. The C≡N distances of the cyanide ligands are shorter as compared to the C≡N contacts in the pseudo-binary compound Hg(CN)2. These molecules reside between layers of K+ cations and [H3CCOO] anions, in each of which every acetate group bridges three potassium atoms. This is achieved by both the bidentate coordination of each [H3CCOO] anion to one K+ cation and the monodentate coordination to two further potassium ions. The coordination environment of K+ is complemented by one K–N contact to an end-on coordinated cyanide anion. In the second coordination sphere, there are additionally two side-on coordinated (C≡N) units. The Raman spectrum of K[Hg(CN)2][H3CCOO] shows the three expected, well-known vibrations of the N≡C–Hg–C≡N molecule. These are the valence vibrations of the C≡N and the Hg–C bonds at 2171 and 383 cm−1 and the Hg–C≡N deformation vibration at 261 cm−1. From the valence vibrations of the [H3CCOO] anion, the ν(C–H) vibration can be found at 2937 cm−1. In the range between 1300 and 1500 cm−1 both C–O/C=O valence vibrations and the H–C–H deformation vibration are visible. The intensity maximum at 904 cm−1 can be assigned to the C–C valence vibration of the acetate anion.


Corresponding author: Thomas Schleid, Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, E-mail:
Dedicated to Professor Hans-Jörg Deiseroth on the Occasion of his 80th Birthday.

Acknowledgment

We like to thank Dr. Falk Lissner for the single-crystal X-ray diffraction measurement.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Yakushev, A. B.; Sivaev, I. B.; Solvetsev, K. A.; Kuznetsov, N. T. Mercury Derivatives of the Anion CB11H12−. Russ. J. Coord. Chem. 1994, 20, 404–405.Search in Google Scholar

2. Zheng, Z.; Diaz, M.; Knobler, C. B.; Hawthorne, M. F. A Mercuracarborand Characterized by B−Hg−B Bonds: Synthesis and Structure of Cyclo-[(t-BuMe2Si)2C2B10H8Hg]3. J. Am. Chem. Soc. 1995, 117, 12338–12339; https://doi.org/10.1021/ja00154a038.Search in Google Scholar

3. Zimmermann, L. W.; Van, Ng.-D.; Gudat, D.; Schleid, Th. Bismuth Undecahydro-closo-Dodecaborane: A Retainable Intermediate of B−H Bond Activation by Bismuth(III) Cations. Angew. Chem. Int. Ed. 2016, 55, 1909–1911; https://doi.org/10.1002/anie.201509629.Search in Google Scholar

4. Biehl, E.; Deiseroth, H.-J. Strukturchemie und Magnetismus der Amalgame MHg11 (M: K, Rb, Sr, Ba). Z. Anorg. Allg. Chem. 1999, 625, 1073–1080.10.1002/(SICI)1521-3749(199907)625:7<1073::AID-ZAAC1073>3.0.CO;2-VSearch in Google Scholar

5. Deiseroth, H.-J. Alkalimetall‐Amalgame. Verbindungen an der Grenze zwischen klassischer Chemie und moderner Festkörperchemie. Chem. unserer Zeit 1991, 25, 83–86; https://doi.org/10.1002/ciuz.19910250204.Search in Google Scholar

6. Deiseroth, H.-J.; Rochnia, M. β‐Na3Hg: A Solid with a Quasi-Fluid Sodium Substructure between 36 and 60 °C. Angew Chem. Int. Ed. 1993, 32, 1494–1495; https://doi.org/10.1002/anie.199314941.Search in Google Scholar

7. Dimitrievska, M.; Wu, H.; Stavila, V.; Babanova, O. A.; Skoryunov, R. V.; Soloninin, A. V.; Zhou, W.; Trump, B. A.; Andersson, M. S.; Skripov, A. V.; Udovic, T. J. Structural and Dynamical Properties of Potassium Dodecahydro-Monocarba-Closo-Dodecaborate: KCB11H12. J. Phys. Chem. C 2020, 124, 17992–18002; https://doi.org/10.1021/acs.jpcc.0c05038.Search in Google Scholar

8. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

9. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

10. Sheldrick, G. M. Shelxs-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

11. Reckeweg, O.; Simon, A. X-Ray and Raman Investigations on Cyanides of Mono- and Divalent Metals and Synthesis, Crystal Structure and Raman Spectrum of Tl5(CO3)2(CN). Z. Naturforsch. 2002, 57b, 895–900; https://doi.org/10.1515/znb-2002-0809.Search in Google Scholar

12. Hvoslef, J.; Norén, B.; Ginsburg, D.; Hartiala, K.; Veige, S.; Diczfalusy, E. A Combined X-Ray and Neutron Diffraction Investigation of Mercuric Cyanide. Acta Chem. Scand. 1958, 12, 1568–1574; https://doi.org/10.3891/acta.chem.scand.12-1568.Search in Google Scholar

13. Hatibarua, J.; Parry, G. S. A Crystallographic Study of the Acetates of Potassium, Rubidium and Caesium. Acta Crystallogr. 1972, B28, 3099–3100; https://doi.org/10.1107/s0567740872007496.Search in Google Scholar

14. Kruse, F. H. The Crystal Structure of KI⋅Hg(CN)2. Acta Crystallogr. 1963, 16, 105–109; https://doi.org/10.1107/s0365110x63000244.Search in Google Scholar

15. Woodward, L. A.; Owen, H. F. The Raman Spectra of Mercuric Cyanide and the Tetracyanomercurate Ion. J. Chem. Soc. 1959, 216, 1055–1058; https://doi.org/10.1039/jr9590001055.Search in Google Scholar

16. Jones, L. H. Vibrational Spectrum and Structure of Metal-Cyanide Complexes in the Solid State. J. Chem. Phys. 1957, 27, 665–668; https://doi.org/10.1063/1.1743810.Search in Google Scholar

17. Nickolov, Z.; Georgiev, G.; Stoilova, D.; Ivanov, I. Raman and IR Study of Cobalt Acetate Dihydrate. J. Mol. Struct. 1995, 354, 119–125; https://doi.org/10.1016/0022-2860(95)08877-x.Search in Google Scholar

18. Bickley, R. I.; Edwards, H.; Rose, S. J.; Gustar, R. A Raman Spectroscopic Study of Nickel(II) Acetate, Ni(CH3COO)2, and its Aqueous and Methanolic Solutions. J. Mol. Struct. 1990, 238, 15–26; https://doi.org/10.1016/0022-2860(90)85002-z.Search in Google Scholar

19. Frost, R.; Kloprogge, J. Raman Spectroscopy of the Acetates of Sodium, Potassium and Magnesium at Liquid Nitrogen Temperature. J. Mol. Struct. 2000, 526, 131–141; https://doi.org/10.1016/s0022-2860(00)00460-9.Search in Google Scholar

20. Barnes, W. H. Evidence for the Complete Dissociation of Salts at All Concentrations in Aqueous Solutions. J. Chem. Educ. 1936, 13, 428–431; https://doi.org/10.1021/ed013p428.Search in Google Scholar

Received: 2024-11-29
Accepted: 2024-12-09
Published Online: 2025-02-14
Published in Print: 2025-01-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0106/html
Scroll to top button