Abstract
A novel Sm(III) orotate complex, [NaSm(orotate)4(H2O)10]·3H2O, has been synthesized and its structure determined by single crystal X-ray diffraction and vibrational (IR and Raman) spectroscopic methods. The title compound crystallizes in the non-centrosymmetric orthorhombic space group Cmc21 with Z = 4. In the crystal structure, one of the two independent orotate ligands links the Sm(III) and Na(I) cations, forming chains. The second orotate ligand completes the coordination environment of the Na(I) ion, resulting in layers that are parallel to the ab plane. This arrangement leads to an extensive three-dimensional network structure, characterized by numerous intermolecular O–H⋯O and N–H⋯O interactions.
Acknowledgements
K. Helios would like to thank Gniewko Soboń for assistance in the synthesis of the title complex.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Katarzyna Helios: Writing - Review & Editing, Visualization, Project administration, Investigation. Marta Brzezińska: Investigation. Tamara J. Bednarchuk: Writing - Review & Editing, Visualization, Investigation.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Internal grant no 25, Faculty of Chemistry, Wrocław University of Science and Technology.
-
Data availability: Not applicable.
References
1. Löffler, M.; Carrey, E. A.; Zameitat, E. J. Genet. Genomics 2015, 42, 207–219; https://doi.org/10.1016/j.jgg.2015.04.001.Search in Google Scholar PubMed
2. Löffler, M.; Carrey, E. A.; Zameitat, E. N. Nucleotides Nucleic Acids 2016, 35, 566–577; https://doi.org/10.1080/15257770.2016.1147580.Search in Google Scholar PubMed
3. May, E.; Thoennessen, M. At. Data Nucl. Data Tables 2013, 99, 1–21; https://doi.org/10.1016/j.adt.2012.01.007.Search in Google Scholar
4. Serafini, A. N.; Houston, S. J.; Resche, I.; Quick, D. P.; Grund, F. M.; Ell, P. J.; Bertrand, A.; Ahmann, F. R.; Orihuela, E.; Reid, R. H.; Lerski, R. A.; Collier, B. D.; McKillop, J. H.; Purnell, G. L.; Pecking, A. P.; Thomas, F. D.; Harrison, K. A. J. Clin. Oncol. 1998, 16, 1574–1581; https://doi.org/10.1200/jco.1998.16.4.1574.Search in Google Scholar
5. Wu, A.-Q.; Zheng, F.-K.; Liu, X.; Guo, G.-C.; Cai, L.-Z.; Dong, Z.-C.; Takano, Y.; Huang, J.-S. Inorg. Chem. Commun. 2006, 9, 347–350; https://doi.org/10.1016/j.inoche.2005.12.014.Search in Google Scholar
6. Li, X.; Cao, R.; Sun, D.; Shi, Q.; Bi, W.; Hong, M. Inorg. Chem. Commun. 2003, 6, 815–818; https://doi.org/10.1016/s1387-7003(03)00114-x.Search in Google Scholar
7. Sun, D.; Cao, R.; Liang, Y.; Hong, M. Chem. Lett. 2001, 30, 878–879; https://doi.org/10.1246/cl.2001.878.Search in Google Scholar
8. Li, X.; Cao, R.; Sun, D.; Shi, Q.; Hong, M.; Liang, Y. Inorg. Chem. Commun. 2002, 5, 589–591; https://doi.org/10.1016/s1387-7003(02)00483-5.Search in Google Scholar
9. Li, Y.; Ju, Y.; Li, X.; Zhang, T.; Wang, C.; Yu, F. J. Rare Earths 2007, 25, 770–774.10.1016/S1002-0721(08)60022-8Search in Google Scholar
10. Li, X.; Shi, Q.; Sun, D.; Bi, W.; Cao, R. Eur. J. Inorg. Chem. 2004, 2747–2753.10.1002/ejic.200300891Search in Google Scholar
11. Li, Z.-Y.; Zhai, Q.; Bai, H.-T.; Zhang, X.-F.; Zhang, C.; Zhai, B. Inorg. Chim. Acta 2024, 560 (5 pages).10.1016/j.ica.2023.121808Search in Google Scholar
12. CrysAlisPRO Software System Intelligent Data Collection And Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Oxford (U. K.), 2022.Search in Google Scholar
13. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar
14. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
15. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
16. Brandenburg, K. Diamond, Crystal and Molecular Structure Visualization; Crystal Impact, K. Brandenburg & H. Putz GbR: Bonn (Germany) 1997.Search in Google Scholar
17. Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. Powder Diffr. 2014, 29, S13–S18; https://doi.org/10.1017/s0885715614000840.Search in Google Scholar
18. Opus (Version 7.5); Bruker Optik GmbH: Ettlingen (Germany), 2014.Search in Google Scholar
19. Origin, OriginLab Corp; Northampton: Massachusetts (USA), 2024.Search in Google Scholar
20. Wysokiński, R.; Helios, K.; Lapinski, L.; Nowak, M. J.; Michalska, D. Vib. Spectrosc. 2013, 64, 108–118; https://doi.org/10.1016/j.vibspec.2012.11.002.Search in Google Scholar
21. Hernanz, A.; Billes, F.; Bratu, I.; Navarro, R. Biopolym. (Biospectroscopy) 2000, 57, 187–198; https://doi.org/10.1002/(sici)1097-0282(2000)57:3<187::aid-bip7>3.0.co;2-6.10.1002/(SICI)1097-0282(2000)57:3<187::AID-BIP7>3.0.CO;2-6Search in Google Scholar
22. Zhu, M. M.; Cui, J.; Zeng, Y.-L.; Ren, N.; Zhang, J.-J. Polyhedron 2019, 158, 485–493; https://doi.org/10.1016/j.poly.2018.11.031.Search in Google Scholar
23. Chauchan, A.; Langyan, R. Rare Met. 2021, 40, 2618–2626; https://doi.org/10.1007/s12598-020-01552-9.Search in Google Scholar
24. Dalal, A.; Nehra, K.; Hooda, A.; Bhagwan, S.; Saini, R. K.; Singh, D.; Kumar, S. Inorg. Chem. Commun. 2022, 141 (10 pages).10.1016/j.inoche.2022.109620Search in Google Scholar
25. Michalska, D.; Hernik, K.; Wysokiński, R.; Morzyk-Ociepa, B.; Pietraszko, A. Polyhedron 2007, 26, 4303–4313; https://doi.org/10.1016/j.poly.2007.05.052.Search in Google Scholar
26. Helios, K.; Wysokiński, R.; Zierkiewicz, W.; Proniewicz, L. M.; Michalska, D. J. Phys. Chem. 2009, B113, 8158–8169; https://doi.org/10.1021/jp901912v.Search in Google Scholar PubMed
27. Helios, K.; Wysokiński, R.; Pietraszko, A.; Michalska, D. Vib. Spectrosc. 2011, 55, 207–215; https://doi.org/10.1016/j.vibspec.2010.11.008.Search in Google Scholar
28. Helios, K.; Pietraszko, A.; Wysokiński, R.; Strommen, D. P.; Michalska, D. Vib. Spectrosc. 2010, 52, 1–9; https://doi.org/10.1016/j.vibspec.2009.09.003.Search in Google Scholar
29. Wysokiński, R.; Hernik, K.; Szostak, R.; Michalska, D. Chem. Phys. 2007, 333, 37–48; https://doi.org/10.1016/j.chemphys.2007.01.002.Search in Google Scholar
30. Helios, K.; Duczmal, M.; Pietraszko, A.; Michalska, D. Polyhedron 2013, 49, 259–268; https://doi.org/10.1016/j.poly.2012.10.018.Search in Google Scholar
31. Helios, K.; Bednarchuk, T. J.; Wysokiński, R.; Duczmal, M.; Wojciechowska, A.; Łukowiak, A.; Kędziora, A.; Małaszczuk, M.; Michalska, D. Polyhedron 2022, 222 (17 pages).10.1016/j.poly.2022.115830Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2024-0091).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm