Home A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
Article
Licensed
Unlicensed Requires Authentication

A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra

  • Katarzyna Helios EMAIL logo , Marta Brzezińska and Tamara J. Bednarchuk
Published/Copyright: January 15, 2025
Become an author with De Gruyter Brill

Abstract

A novel Sm(III) orotate complex, [NaSm(orotate)4(H2O)10]·3H2O, has been synthesized and its structure determined by single crystal X-ray diffraction and vibrational (IR and Raman) spectroscopic methods. The title compound crystallizes in the non-centrosymmetric orthorhombic space group Cmc21 with Z = 4. In the crystal structure, one of the two independent orotate ligands links the Sm(III) and Na(I) cations, forming chains. The second orotate ligand completes the coordination environment of the Na(I) ion, resulting in layers that are parallel to the ab plane. This arrangement leads to an extensive three-dimensional network structure, characterized by numerous intermolecular O–H⋯O and N–H⋯O interactions.


Corresponding author: Katarzyna Helios, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 23, 50-370 Wrocław, Poland, E-mail:

Acknowledgements

K. Helios would like to thank Gniewko Soboń for assistance in the synthesis of the title complex.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Katarzyna Helios: Writing - Review & Editing, Visualization, Project administration, Investigation. Marta Brzezińska: Investigation. Tamara J. Bednarchuk: Writing - Review & Editing, Visualization, Investigation.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Internal grant no 25, Faculty of Chemistry, Wrocław University of Science and Technology.

  7. Data availability: Not applicable.

References

1. Löffler, M.; Carrey, E. A.; Zameitat, E. J. Genet. Genomics 2015, 42, 207–219; https://doi.org/10.1016/j.jgg.2015.04.001.Search in Google Scholar PubMed

2. Löffler, M.; Carrey, E. A.; Zameitat, E. N. Nucleotides Nucleic Acids 2016, 35, 566–577; https://doi.org/10.1080/15257770.2016.1147580.Search in Google Scholar PubMed

3. May, E.; Thoennessen, M. At. Data Nucl. Data Tables 2013, 99, 1–21; https://doi.org/10.1016/j.adt.2012.01.007.Search in Google Scholar

4. Serafini, A. N.; Houston, S. J.; Resche, I.; Quick, D. P.; Grund, F. M.; Ell, P. J.; Bertrand, A.; Ahmann, F. R.; Orihuela, E.; Reid, R. H.; Lerski, R. A.; Collier, B. D.; McKillop, J. H.; Purnell, G. L.; Pecking, A. P.; Thomas, F. D.; Harrison, K. A. J. Clin. Oncol. 1998, 16, 1574–1581; https://doi.org/10.1200/jco.1998.16.4.1574.Search in Google Scholar

5. Wu, A.-Q.; Zheng, F.-K.; Liu, X.; Guo, G.-C.; Cai, L.-Z.; Dong, Z.-C.; Takano, Y.; Huang, J.-S. Inorg. Chem. Commun. 2006, 9, 347–350; https://doi.org/10.1016/j.inoche.2005.12.014.Search in Google Scholar

6. Li, X.; Cao, R.; Sun, D.; Shi, Q.; Bi, W.; Hong, M. Inorg. Chem. Commun. 2003, 6, 815–818; https://doi.org/10.1016/s1387-7003(03)00114-x.Search in Google Scholar

7. Sun, D.; Cao, R.; Liang, Y.; Hong, M. Chem. Lett. 2001, 30, 878–879; https://doi.org/10.1246/cl.2001.878.Search in Google Scholar

8. Li, X.; Cao, R.; Sun, D.; Shi, Q.; Hong, M.; Liang, Y. Inorg. Chem. Commun. 2002, 5, 589–591; https://doi.org/10.1016/s1387-7003(02)00483-5.Search in Google Scholar

9. Li, Y.; Ju, Y.; Li, X.; Zhang, T.; Wang, C.; Yu, F. J. Rare Earths 2007, 25, 770–774.10.1016/S1002-0721(08)60022-8Search in Google Scholar

10. Li, X.; Shi, Q.; Sun, D.; Bi, W.; Cao, R. Eur. J. Inorg. Chem. 2004, 2747–2753.10.1002/ejic.200300891Search in Google Scholar

11. Li, Z.-Y.; Zhai, Q.; Bai, H.-T.; Zhang, X.-F.; Zhang, C.; Zhai, B. Inorg. Chim. Acta 2024, 560 (5 pages).10.1016/j.ica.2023.121808Search in Google Scholar

12. CrysAlisPRO Software System Intelligent Data Collection And Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Oxford (U. K.), 2022.Search in Google Scholar

13. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar

14. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

15. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

16. Brandenburg, K. Diamond, Crystal and Molecular Structure Visualization; Crystal Impact, K. Brandenburg & H. Putz GbR: Bonn (Germany) 1997.Search in Google Scholar

17. Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. Powder Diffr. 2014, 29, S13–S18; https://doi.org/10.1017/s0885715614000840.Search in Google Scholar

18. Opus (Version 7.5); Bruker Optik GmbH: Ettlingen (Germany), 2014.Search in Google Scholar

19. Origin, OriginLab Corp; Northampton: Massachusetts (USA), 2024.Search in Google Scholar

20. Wysokiński, R.; Helios, K.; Lapinski, L.; Nowak, M. J.; Michalska, D. Vib. Spectrosc. 2013, 64, 108–118; https://doi.org/10.1016/j.vibspec.2012.11.002.Search in Google Scholar

21. Hernanz, A.; Billes, F.; Bratu, I.; Navarro, R. Biopolym. (Biospectroscopy) 2000, 57, 187–198; https://doi.org/10.1002/(sici)1097-0282(2000)57:3<187::aid-bip7>3.0.co;2-6.10.1002/(SICI)1097-0282(2000)57:3<187::AID-BIP7>3.0.CO;2-6Search in Google Scholar

22. Zhu, M. M.; Cui, J.; Zeng, Y.-L.; Ren, N.; Zhang, J.-J. Polyhedron 2019, 158, 485–493; https://doi.org/10.1016/j.poly.2018.11.031.Search in Google Scholar

23. Chauchan, A.; Langyan, R. Rare Met. 2021, 40, 2618–2626; https://doi.org/10.1007/s12598-020-01552-9.Search in Google Scholar

24. Dalal, A.; Nehra, K.; Hooda, A.; Bhagwan, S.; Saini, R. K.; Singh, D.; Kumar, S. Inorg. Chem. Commun. 2022, 141 (10 pages).10.1016/j.inoche.2022.109620Search in Google Scholar

25. Michalska, D.; Hernik, K.; Wysokiński, R.; Morzyk-Ociepa, B.; Pietraszko, A. Polyhedron 2007, 26, 4303–4313; https://doi.org/10.1016/j.poly.2007.05.052.Search in Google Scholar

26. Helios, K.; Wysokiński, R.; Zierkiewicz, W.; Proniewicz, L. M.; Michalska, D. J. Phys. Chem. 2009, B113, 8158–8169; https://doi.org/10.1021/jp901912v.Search in Google Scholar PubMed

27. Helios, K.; Wysokiński, R.; Pietraszko, A.; Michalska, D. Vib. Spectrosc. 2011, 55, 207–215; https://doi.org/10.1016/j.vibspec.2010.11.008.Search in Google Scholar

28. Helios, K.; Pietraszko, A.; Wysokiński, R.; Strommen, D. P.; Michalska, D. Vib. Spectrosc. 2010, 52, 1–9; https://doi.org/10.1016/j.vibspec.2009.09.003.Search in Google Scholar

29. Wysokiński, R.; Hernik, K.; Szostak, R.; Michalska, D. Chem. Phys. 2007, 333, 37–48; https://doi.org/10.1016/j.chemphys.2007.01.002.Search in Google Scholar

30. Helios, K.; Duczmal, M.; Pietraszko, A.; Michalska, D. Polyhedron 2013, 49, 259–268; https://doi.org/10.1016/j.poly.2012.10.018.Search in Google Scholar

31. Helios, K.; Bednarchuk, T. J.; Wysokiński, R.; Duczmal, M.; Wojciechowska, A.; Łukowiak, A.; Kędziora, A.; Małaszczuk, M.; Michalska, D. Polyhedron 2022, 222 (17 pages).10.1016/j.poly.2022.115830Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2024-0091).


Received: 2024-09-30
Accepted: 2024-10-31
Published Online: 2025-01-15
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0091/html
Scroll to top button