Startseite A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra

  • Katarzyna Helios EMAIL logo , Marta Brzezińska und Tamara J. Bednarchuk
Veröffentlicht/Copyright: 15. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel Sm(III) orotate complex, [NaSm(orotate)4(H2O)10]·3H2O, has been synthesized and its structure determined by single crystal X-ray diffraction and vibrational (IR and Raman) spectroscopic methods. The title compound crystallizes in the non-centrosymmetric orthorhombic space group Cmc21 with Z = 4. In the crystal structure, one of the two independent orotate ligands links the Sm(III) and Na(I) cations, forming chains. The second orotate ligand completes the coordination environment of the Na(I) ion, resulting in layers that are parallel to the ab plane. This arrangement leads to an extensive three-dimensional network structure, characterized by numerous intermolecular O–H⋯O and N–H⋯O interactions.


Corresponding author: Katarzyna Helios, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 23, 50-370 Wrocław, Poland, E-mail:

Acknowledgements

K. Helios would like to thank Gniewko Soboń for assistance in the synthesis of the title complex.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Katarzyna Helios: Writing - Review & Editing, Visualization, Project administration, Investigation. Marta Brzezińska: Investigation. Tamara J. Bednarchuk: Writing - Review & Editing, Visualization, Investigation.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Internal grant no 25, Faculty of Chemistry, Wrocław University of Science and Technology.

  7. Data availability: Not applicable.

References

1. Löffler, M.; Carrey, E. A.; Zameitat, E. J. Genet. Genomics 2015, 42, 207–219; https://doi.org/10.1016/j.jgg.2015.04.001.Suche in Google Scholar PubMed

2. Löffler, M.; Carrey, E. A.; Zameitat, E. N. Nucleotides Nucleic Acids 2016, 35, 566–577; https://doi.org/10.1080/15257770.2016.1147580.Suche in Google Scholar PubMed

3. May, E.; Thoennessen, M. At. Data Nucl. Data Tables 2013, 99, 1–21; https://doi.org/10.1016/j.adt.2012.01.007.Suche in Google Scholar

4. Serafini, A. N.; Houston, S. J.; Resche, I.; Quick, D. P.; Grund, F. M.; Ell, P. J.; Bertrand, A.; Ahmann, F. R.; Orihuela, E.; Reid, R. H.; Lerski, R. A.; Collier, B. D.; McKillop, J. H.; Purnell, G. L.; Pecking, A. P.; Thomas, F. D.; Harrison, K. A. J. Clin. Oncol. 1998, 16, 1574–1581; https://doi.org/10.1200/jco.1998.16.4.1574.Suche in Google Scholar

5. Wu, A.-Q.; Zheng, F.-K.; Liu, X.; Guo, G.-C.; Cai, L.-Z.; Dong, Z.-C.; Takano, Y.; Huang, J.-S. Inorg. Chem. Commun. 2006, 9, 347–350; https://doi.org/10.1016/j.inoche.2005.12.014.Suche in Google Scholar

6. Li, X.; Cao, R.; Sun, D.; Shi, Q.; Bi, W.; Hong, M. Inorg. Chem. Commun. 2003, 6, 815–818; https://doi.org/10.1016/s1387-7003(03)00114-x.Suche in Google Scholar

7. Sun, D.; Cao, R.; Liang, Y.; Hong, M. Chem. Lett. 2001, 30, 878–879; https://doi.org/10.1246/cl.2001.878.Suche in Google Scholar

8. Li, X.; Cao, R.; Sun, D.; Shi, Q.; Hong, M.; Liang, Y. Inorg. Chem. Commun. 2002, 5, 589–591; https://doi.org/10.1016/s1387-7003(02)00483-5.Suche in Google Scholar

9. Li, Y.; Ju, Y.; Li, X.; Zhang, T.; Wang, C.; Yu, F. J. Rare Earths 2007, 25, 770–774.10.1016/S1002-0721(08)60022-8Suche in Google Scholar

10. Li, X.; Shi, Q.; Sun, D.; Bi, W.; Cao, R. Eur. J. Inorg. Chem. 2004, 2747–2753.10.1002/ejic.200300891Suche in Google Scholar

11. Li, Z.-Y.; Zhai, Q.; Bai, H.-T.; Zhang, X.-F.; Zhang, C.; Zhai, B. Inorg. Chim. Acta 2024, 560 (5 pages).10.1016/j.ica.2023.121808Suche in Google Scholar

12. CrysAlisPRO Software System Intelligent Data Collection And Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Oxford (U. K.), 2022.Suche in Google Scholar

13. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar

14. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Suche in Google Scholar

15. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

16. Brandenburg, K. Diamond, Crystal and Molecular Structure Visualization; Crystal Impact, K. Brandenburg & H. Putz GbR: Bonn (Germany) 1997.Suche in Google Scholar

17. Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. Powder Diffr. 2014, 29, S13–S18; https://doi.org/10.1017/s0885715614000840.Suche in Google Scholar

18. Opus (Version 7.5); Bruker Optik GmbH: Ettlingen (Germany), 2014.Suche in Google Scholar

19. Origin, OriginLab Corp; Northampton: Massachusetts (USA), 2024.Suche in Google Scholar

20. Wysokiński, R.; Helios, K.; Lapinski, L.; Nowak, M. J.; Michalska, D. Vib. Spectrosc. 2013, 64, 108–118; https://doi.org/10.1016/j.vibspec.2012.11.002.Suche in Google Scholar

21. Hernanz, A.; Billes, F.; Bratu, I.; Navarro, R. Biopolym. (Biospectroscopy) 2000, 57, 187–198; https://doi.org/10.1002/(sici)1097-0282(2000)57:3<187::aid-bip7>3.0.co;2-6.10.1002/(SICI)1097-0282(2000)57:3<187::AID-BIP7>3.0.CO;2-6Suche in Google Scholar

22. Zhu, M. M.; Cui, J.; Zeng, Y.-L.; Ren, N.; Zhang, J.-J. Polyhedron 2019, 158, 485–493; https://doi.org/10.1016/j.poly.2018.11.031.Suche in Google Scholar

23. Chauchan, A.; Langyan, R. Rare Met. 2021, 40, 2618–2626; https://doi.org/10.1007/s12598-020-01552-9.Suche in Google Scholar

24. Dalal, A.; Nehra, K.; Hooda, A.; Bhagwan, S.; Saini, R. K.; Singh, D.; Kumar, S. Inorg. Chem. Commun. 2022, 141 (10 pages).10.1016/j.inoche.2022.109620Suche in Google Scholar

25. Michalska, D.; Hernik, K.; Wysokiński, R.; Morzyk-Ociepa, B.; Pietraszko, A. Polyhedron 2007, 26, 4303–4313; https://doi.org/10.1016/j.poly.2007.05.052.Suche in Google Scholar

26. Helios, K.; Wysokiński, R.; Zierkiewicz, W.; Proniewicz, L. M.; Michalska, D. J. Phys. Chem. 2009, B113, 8158–8169; https://doi.org/10.1021/jp901912v.Suche in Google Scholar PubMed

27. Helios, K.; Wysokiński, R.; Pietraszko, A.; Michalska, D. Vib. Spectrosc. 2011, 55, 207–215; https://doi.org/10.1016/j.vibspec.2010.11.008.Suche in Google Scholar

28. Helios, K.; Pietraszko, A.; Wysokiński, R.; Strommen, D. P.; Michalska, D. Vib. Spectrosc. 2010, 52, 1–9; https://doi.org/10.1016/j.vibspec.2009.09.003.Suche in Google Scholar

29. Wysokiński, R.; Hernik, K.; Szostak, R.; Michalska, D. Chem. Phys. 2007, 333, 37–48; https://doi.org/10.1016/j.chemphys.2007.01.002.Suche in Google Scholar

30. Helios, K.; Duczmal, M.; Pietraszko, A.; Michalska, D. Polyhedron 2013, 49, 259–268; https://doi.org/10.1016/j.poly.2012.10.018.Suche in Google Scholar

31. Helios, K.; Bednarchuk, T. J.; Wysokiński, R.; Duczmal, M.; Wojciechowska, A.; Łukowiak, A.; Kędziora, A.; Małaszczuk, M.; Michalska, D. Polyhedron 2022, 222 (17 pages).10.1016/j.poly.2022.115830Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2024-0091).


Received: 2024-09-30
Accepted: 2024-10-31
Published Online: 2025-01-15
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0091/html
Button zum nach oben scrollen