Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
-
Esma Lamera
Abstract
A new, convenient and efficient method for the construction of a new polycyclic condensed system containing an azepine and pyrazolophthalazine has been developed in the form of a two-step protocol comprising the condensation reaction of hydroxylamine with 1H-indazolo[1,2-b]phthalazine-1,6,11-trione derivative, followed by a Beckman rearrangement reaction using polyphosphoric acid (PPA) as catalyst. Various substituted substrates were successfully used, affording the azepino phthalazine hybrids in good yields and in short reaction times.
Acknowledgements
We are grateful to the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique–Algérie (MESRS) for financial support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: E. Lamera: Investigation, Methodology. A. Chibani: Investigation. Z. Bouaziz: Investigation, Formal analysis. M. Le Borgne: Investigation, Methodology, Validation. R. Maadadi: Investigation, Formal analysis. A. Bouraiou: Resources, Writing – original draft, Writing – review & editing, Visualization. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors.
-
Data availability: Not applicable.
References
1. Meth-Cohn, O. Comprehensive Heterocyclic Chemistry, Vol. 1, Katritzky, A. R.; Rees, C. W.; Series Eds. Pergamon Press: New York, 1984.Search in Google Scholar
2. Montalban, A. G. Quinolines and Isoquinolines. In Heterocycles in Natural Product Synthesis; Majumdar, K. C.; Chattopadhyay, S. K., Eds.; Wiley VCH: New York, 2011; pp. 299–340.10.1002/9783527634880.ch9Search in Google Scholar
3. Zhang, Q. R.; Xue, D. Q.; He, P.; Shao, K. P.; Chen, P. J.; Gu, Y. F.; Ren, J. L.; Shan, L. H.; Liu, H. M. Synthesis and Antimicrobial Activities of Novel 1,2,4-triazolo [3,4-a] Phthalazine Derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 1236–1238; https://doi.org/10.1016/j.bmcl.2013.12.010.Search in Google Scholar PubMed
4. Khalil, A. M.; Berghot, M. A.; Gouda, M. A. Synthesis and Antibacterial Activity of Some New Heterocycles Incorporating Phthalazine. Eur. J. Med. Chem. 2009, 44, 4448–4454; https://doi.org/10.1016/j.ejmech.2009.06.003.Search in Google Scholar PubMed
5. Xue, D. Q.; Zhang, X. Y.; Wang, C. J.; Ma, L. Y.; Zhu, N.; He, P.; Shao, K. P.; Chen, P. J.; Gu, Y. F.; Zhang, X. S.; Wang, C. F.; Ji, C. H.; Zhang, Q. R.; Liu, H. M. Synthesis and Anticancer Activities of Novel 1,2,4-Triazolo[3,4-A]phthalazine Derivatives. Eur. J. Med. Chem. 2014, 85, 235–244; https://doi.org/10.1016/j.ejmech.2014.07.031.Search in Google Scholar PubMed
6. Ma, L. X.; Cui, B. R.; Wu, Y.; Liu, J. C.; Cui, X.; Liu, L. P.; Piao, H. R. Synthesis and Positive Inotropic Evaluation of [1,2,4]triazolo[3,4-A]phthalazine and Tetrazolo[5,1-A]phthalazine Derivatives Bearing Substituted Piperazine Moieties. Bioorg. Med. Chem. Lett. 2014, 24, 1737–1741; https://doi.org/10.1016/j.bmcl.2014.02.040.Search in Google Scholar PubMed
7. Wilson, C. L.; Apatu, J. O.; Budhram, R. S.; Apatu, J. O. Studies Concerning Pyrrolo[2, 1-a]phthalazines and Related Compounds. J. Heterocycl. Chem. 1989, 26, 571–576; https://doi.org/10.1002/jhet.5570260309.Search in Google Scholar
8. Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappalà, M.; Puja, G.; Baraldi, M.; De Micheli, C. Synthesis and Anticonvulsant Activity of Novel and Potent 6,7-Methylenedioxyphthalazin-1(2h)-Ones. J. Med. Chem. 2000, 43, 2851–2859; https://doi.org/10.1021/jm001002x.Search in Google Scholar PubMed
9. Liu, D. C.; Gong, G. H.; Wei, C. X.; Jin, X. J.; Quan, Z. S. Synthesis and Anti-inflammatory Activity Evaluation of a Novel Series of 6-Phenoxy-[1,2,4]triazolo[3,4-A]phthalazine-3-Carboxamide Derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 1576–1579; https://doi.org/10.1016/j.bmcl.2016.02.008.Search in Google Scholar PubMed
10. Sun, X. Y.; Hu, C.; Deng, X. Q.; Wei, C. X.; Sun, Z. G.; Quan, Z. S. Synthesis and Anti-inflammatory Activity Evaluation of Some Novel 6-Alkoxy(phenoxy)-[1,2,4]triazolo[3,4-A]phthalazine-3-Amine Derivatives. Eur. J. Med. Chem. 2010, 45, 4807–4812; https://doi.org/10.1016/j.ejmech.2010.07.049.Search in Google Scholar PubMed
11. Rodríguez-Ciria, M.; Sanz, A. M.; Yunta, M. J. R.; Gomez-Contreras, F.; Navarro, P.; Fernandez, I.; Pardo, M.; Cano, C. Synthesis and Cytotoxic Activity of N,N-bis-{3-[N-(4-chlorobenzo[g]-phthalazin-1-yl)]aminopropyl}-N-methylamine: a New Potential DNA Bisintercalator. Bioorg. Med. Chem. 2003, 11, 2143–2148; https://doi.org/10.1016/s0968-0896(03)00127-5.Search in Google Scholar PubMed
12. Sangani, C. B.; Makwana, J. A.; Duan, Y. T.; Thumar, N. J.; Zhao, M. Y.; Patel, Y. S.; Zhu, H. L. Synthesis of 1H-Pyrazolo[1,2-B]phthalazine-5,10-Dione Derivatives: Assessment of Their Antimicrobial, Antituberculosis and Antioxidant Activity. Res. Chem. Intermed. 2016, 42, 2101–2117; https://doi.org/10.1007/s11164-015-2138-7.Search in Google Scholar
13. Aly, A. A.; Gad El-Karim, I. A. Synthesis of S-Triazolo[3, 4a] Phthalazine and Related Polynuclear Heterocyclic Systems. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 1997–2011.10.1080/104265090902769Search in Google Scholar
14. Besford, L. S.; Allen, G.; Bruce, J. M. Heterocyclic Compounds of Nitrogen. Part VI. The Structures of Some Dihydrocinnolines. J. Chem. Soc. 1963, 2867–2870.10.1039/jr9630002867Search in Google Scholar
15. Dubinina, G. G.; Chain, W. J. Reactions of Azepinones with Electrophiles. Tetrahedron Lett. 2011, 52, 939–942; https://doi.org/10.1016/j.tetlet.2010.12.091.Search in Google Scholar
16. White, A. W.; Carpenter, N.; Lottin, J. R. P.; McClelland, R. A.; Nicholson, R. I. Synthesis and Evaluation of Novel Anti-proliferative Pyrroloazepinone and Indoloazepinone Oximes Derived from the Marine Natural Product Hymenialdisine. Eur. J. Med. Chem. 2012, 56, 246–253; https://doi.org/10.1016/j.ejmech.2012.08.022.Search in Google Scholar PubMed
17. Singh, A. K.; Raj, V.; Saha, S. Indole-fused Azepines and Analogues as Anticancer Lead Molecules: Privileged Findings and Future Directions. Eur. J. Med. Chem. 2017, 142, 244–265; https://doi.org/10.1016/j.ejmech.2017.07.042.Search in Google Scholar PubMed
18. Psarra, V.; Fousteris, M. A.; Hennig, L.; Bantzi, M.; Giannis, A.; Nikolaropoulos, S. S. Identification of Azepinone Fused Tetracyclic Heterocycles as New Chemotypes with Protein Kinase Inhibitory Activities. Tetrahedron 2016, 72, 2376–2385; https://doi.org/10.1016/j.tet.2016.03.048.Search in Google Scholar
19. Akhtar, J.; Khan, A. A.; Ali, Z.; Haider, R.; Yar, M. S. Structure-activity Relationship (SAR) Study and Design Strategies of Nitrogen-Containing Heterocyclic Moieties for Their Anticancer Activities. Eur. J. Med. Chem. 2017, 125, 143–189; https://doi.org/10.1016/j.ejmech.2016.09.023.Search in Google Scholar PubMed
20. Lamera, E.; Bouacida, S.; Le Borgne, M.; Bouaziz, Z.; Bouraiou, A. Sequential MCR/Fisher Indolization Strategy for the Construction of Polycyclic Carbazole Derivatives. Tetrahedron Lett. 2017, 58, 1305–1307; https://doi.org/10.1016/j.tetlet.2017.02.047.Search in Google Scholar
21. Khurana, J. M.; Magoo, D. Efficient One-Pot Syntheses of 2H-Indazolo[2,1-B] Phthalazine-Triones by Catalytic H2SO4 in Water–Ethanol or Ionic Liquid. Tetrahedron Lett. 2009, 50, 7300–7303; https://doi.org/10.1016/j.tetlet.2009.10.032.Search in Google Scholar
22. Atar, A. B.; Lee, S. D.; Cho, B. G.; Cho, D. W.; Jeong, Y. T. β-Cyclodextrine-SO3H : the Most Efficient Catalyst for One-Pot Synthesis of 2H-Indazolo[2,1-B]phthalazine-Triones under Solvent Free Conditions. Res. Chem. Intermed. 2016, 42, 1707–1728; https://doi.org/10.1007/s11164-015-2113-3.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm