Home Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
Article
Licensed
Unlicensed Requires Authentication

Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids

  • Esma Lamera , Aissa Chibani , Zouhair Bouaziz , Marc Le Borgne , Ramzi Maadadi and Abdelmalek Bouraiou EMAIL logo
Published/Copyright: December 10, 2024
Become an author with De Gruyter Brill

Abstract

A new, convenient and efficient method for the construction of a new polycyclic condensed system containing an azepine and pyrazolophthalazine has been developed in the form of a two-step protocol comprising the condensation reaction of hydroxylamine with 1H-indazolo[1,2-b]phthalazine-1,6,11-trione derivative, followed by a Beckman rearrangement reaction using polyphosphoric acid (PPA) as catalyst. Various substituted substrates were successfully used, affording the azepino phthalazine hybrids in good yields and in short reaction times.


Corresponding author: Abdelmalek Bouraiou, Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale, Université des Frères Mentouri, Constantine, 25000, Algérie, E-mail:

Acknowledgements

We are grateful to the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique–Algérie (MESRS) for financial support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: E. Lamera: Investigation, Methodology. A. Chibani: Investigation. Z. Bouaziz: Investigation, Formal analysis. M. Le Borgne: Investigation, Methodology, Validation. R. Maadadi: Investigation, Formal analysis. A. Bouraiou: Resources, Writing – original draft, Writing – review & editing, Visualization. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  6. Research funding: This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors.

  7. Data availability: Not applicable.

References

1. Meth-Cohn, O. Comprehensive Heterocyclic Chemistry, Vol. 1, Katritzky, A. R.; Rees, C. W.; Series Eds. Pergamon Press: New York, 1984.Search in Google Scholar

2. Montalban, A. G. Quinolines and Isoquinolines. In Heterocycles in Natural Product Synthesis; Majumdar, K. C.; Chattopadhyay, S. K., Eds.; Wiley VCH: New York, 2011; pp. 299–340.10.1002/9783527634880.ch9Search in Google Scholar

3. Zhang, Q. R.; Xue, D. Q.; He, P.; Shao, K. P.; Chen, P. J.; Gu, Y. F.; Ren, J. L.; Shan, L. H.; Liu, H. M. Synthesis and Antimicrobial Activities of Novel 1,2,4-triazolo [3,4-a] Phthalazine Derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 1236–1238; https://doi.org/10.1016/j.bmcl.2013.12.010.Search in Google Scholar PubMed

4. Khalil, A. M.; Berghot, M. A.; Gouda, M. A. Synthesis and Antibacterial Activity of Some New Heterocycles Incorporating Phthalazine. Eur. J. Med. Chem. 2009, 44, 4448–4454; https://doi.org/10.1016/j.ejmech.2009.06.003.Search in Google Scholar PubMed

5. Xue, D. Q.; Zhang, X. Y.; Wang, C. J.; Ma, L. Y.; Zhu, N.; He, P.; Shao, K. P.; Chen, P. J.; Gu, Y. F.; Zhang, X. S.; Wang, C. F.; Ji, C. H.; Zhang, Q. R.; Liu, H. M. Synthesis and Anticancer Activities of Novel 1,2,4-Triazolo[3,4-A]phthalazine Derivatives. Eur. J. Med. Chem. 2014, 85, 235–244; https://doi.org/10.1016/j.ejmech.2014.07.031.Search in Google Scholar PubMed

6. Ma, L. X.; Cui, B. R.; Wu, Y.; Liu, J. C.; Cui, X.; Liu, L. P.; Piao, H. R. Synthesis and Positive Inotropic Evaluation of [1,2,4]triazolo[3,4-A]phthalazine and Tetrazolo[5,1-A]phthalazine Derivatives Bearing Substituted Piperazine Moieties. Bioorg. Med. Chem. Lett. 2014, 24, 1737–1741; https://doi.org/10.1016/j.bmcl.2014.02.040.Search in Google Scholar PubMed

7. Wilson, C. L.; Apatu, J. O.; Budhram, R. S.; Apatu, J. O. Studies Concerning Pyrrolo[2, 1-a]phthalazines and Related Compounds. J. Heterocycl. Chem. 1989, 26, 571–576; https://doi.org/10.1002/jhet.5570260309.Search in Google Scholar

8. Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappalà, M.; Puja, G.; Baraldi, M.; De Micheli, C. Synthesis and Anticonvulsant Activity of Novel and Potent 6,7-Methylenedioxyphthalazin-1(2h)-Ones. J. Med. Chem. 2000, 43, 2851–2859; https://doi.org/10.1021/jm001002x.Search in Google Scholar PubMed

9. Liu, D. C.; Gong, G. H.; Wei, C. X.; Jin, X. J.; Quan, Z. S. Synthesis and Anti-inflammatory Activity Evaluation of a Novel Series of 6-Phenoxy-[1,2,4]triazolo[3,4-A]phthalazine-3-Carboxamide Derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 1576–1579; https://doi.org/10.1016/j.bmcl.2016.02.008.Search in Google Scholar PubMed

10. Sun, X. Y.; Hu, C.; Deng, X. Q.; Wei, C. X.; Sun, Z. G.; Quan, Z. S. Synthesis and Anti-inflammatory Activity Evaluation of Some Novel 6-Alkoxy(phenoxy)-[1,2,4]triazolo[3,4-A]phthalazine-3-Amine Derivatives. Eur. J. Med. Chem. 2010, 45, 4807–4812; https://doi.org/10.1016/j.ejmech.2010.07.049.Search in Google Scholar PubMed

11. Rodríguez-Ciria, M.; Sanz, A. M.; Yunta, M. J. R.; Gomez-Contreras, F.; Navarro, P.; Fernandez, I.; Pardo, M.; Cano, C. Synthesis and Cytotoxic Activity of N,N-bis-{3-[N-(4-chlorobenzo[g]-phthalazin-1-yl)]aminopropyl}-N-methylamine: a New Potential DNA Bisintercalator. Bioorg. Med. Chem. 2003, 11, 2143–2148; https://doi.org/10.1016/s0968-0896(03)00127-5.Search in Google Scholar PubMed

12. Sangani, C. B.; Makwana, J. A.; Duan, Y. T.; Thumar, N. J.; Zhao, M. Y.; Patel, Y. S.; Zhu, H. L. Synthesis of 1H-Pyrazolo[1,2-B]phthalazine-5,10-Dione Derivatives: Assessment of Their Antimicrobial, Antituberculosis and Antioxidant Activity. Res. Chem. Intermed. 2016, 42, 2101–2117; https://doi.org/10.1007/s11164-015-2138-7.Search in Google Scholar

13. Aly, A. A.; Gad El-Karim, I. A. Synthesis of S-Triazolo[3, 4a] Phthalazine and Related Polynuclear Heterocyclic Systems. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 1997–2011.10.1080/104265090902769Search in Google Scholar

14. Besford, L. S.; Allen, G.; Bruce, J. M. Heterocyclic Compounds of Nitrogen. Part VI. The Structures of Some Dihydrocinnolines. J. Chem. Soc. 1963, 2867–2870.10.1039/jr9630002867Search in Google Scholar

15. Dubinina, G. G.; Chain, W. J. Reactions of Azepinones with Electrophiles. Tetrahedron Lett. 2011, 52, 939–942; https://doi.org/10.1016/j.tetlet.2010.12.091.Search in Google Scholar

16. White, A. W.; Carpenter, N.; Lottin, J. R. P.; McClelland, R. A.; Nicholson, R. I. Synthesis and Evaluation of Novel Anti-proliferative Pyrroloazepinone and Indoloazepinone Oximes Derived from the Marine Natural Product Hymenialdisine. Eur. J. Med. Chem. 2012, 56, 246–253; https://doi.org/10.1016/j.ejmech.2012.08.022.Search in Google Scholar PubMed

17. Singh, A. K.; Raj, V.; Saha, S. Indole-fused Azepines and Analogues as Anticancer Lead Molecules: Privileged Findings and Future Directions. Eur. J. Med. Chem. 2017, 142, 244–265; https://doi.org/10.1016/j.ejmech.2017.07.042.Search in Google Scholar PubMed

18. Psarra, V.; Fousteris, M. A.; Hennig, L.; Bantzi, M.; Giannis, A.; Nikolaropoulos, S. S. Identification of Azepinone Fused Tetracyclic Heterocycles as New Chemotypes with Protein Kinase Inhibitory Activities. Tetrahedron 2016, 72, 2376–2385; https://doi.org/10.1016/j.tet.2016.03.048.Search in Google Scholar

19. Akhtar, J.; Khan, A. A.; Ali, Z.; Haider, R.; Yar, M. S. Structure-activity Relationship (SAR) Study and Design Strategies of Nitrogen-Containing Heterocyclic Moieties for Their Anticancer Activities. Eur. J. Med. Chem. 2017, 125, 143–189; https://doi.org/10.1016/j.ejmech.2016.09.023.Search in Google Scholar PubMed

20. Lamera, E.; Bouacida, S.; Le Borgne, M.; Bouaziz, Z.; Bouraiou, A. Sequential MCR/Fisher Indolization Strategy for the Construction of Polycyclic Carbazole Derivatives. Tetrahedron Lett. 2017, 58, 1305–1307; https://doi.org/10.1016/j.tetlet.2017.02.047.Search in Google Scholar

21. Khurana, J. M.; Magoo, D. Efficient One-Pot Syntheses of 2H-Indazolo[2,1-B] Phthalazine-Triones by Catalytic H2SO4 in Water–Ethanol or Ionic Liquid. Tetrahedron Lett. 2009, 50, 7300–7303; https://doi.org/10.1016/j.tetlet.2009.10.032.Search in Google Scholar

22. Atar, A. B.; Lee, S. D.; Cho, B. G.; Cho, D. W.; Jeong, Y. T. β-Cyclodextrine-SO3H : the Most Efficient Catalyst for One-Pot Synthesis of 2H-Indazolo[2,1-B]phthalazine-Triones under Solvent Free Conditions. Res. Chem. Intermed. 2016, 42, 1707–1728; https://doi.org/10.1007/s11164-015-2113-3.Search in Google Scholar

Received: 2024-04-23
Accepted: 2024-07-20
Published Online: 2024-12-10
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2024-0034/html
Scroll to top button