Abstract
SrPd2Sn2 was synthesized by a reaction of the elements in a sealed tantalum tube in an induction furnace followed by annealing in a muffle furnace to increase crystallinity. The polycrystalline sample was studied by powder X-ray diffraction: P4/nmm, a = 464.00(7), c = 1,058.4(4) pm and V = 0.2279 nm3. The CaBe2Ge2-type structure was refined from single-crystal X-ray diffractometer data: a = 464.09(4), c = 1,059.64(8) pm, wR = 0.0507, 307 F2 values and 17 variables. The single crystal shows small defects (95.9(5) %) on the Pd2 site and 73(5) % Sn2/27 % Pd3 mixing on one 2c site. The refined composition of the single crystal is SrPd2.23Sn1.73. The palladium and tin atoms form a three-dimensional, covalently bonded [Pd2.23Sn1.73] network with short Pd–Sn distances (263.3–271.4 pm). The two crystallographically independent palladium atoms in the network have tetrahedral and square pyramidal tin coordination, respectively. Within the [Pd2.23Sn1.73] network the strontium atoms fill larger cavities. The strontium atoms are coordinated by nine palladium and nine tin atoms.
Acknowledgements
We thank Dr. C. Paulsen for the EDX analyses.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Gladyshevskii, E. I.; Krypyakevych, P. I.; Teslyuk, M. Y. Dokl. Akad. Nauk. SSSR 1952, 85, 81–84.Search in Google Scholar
2. Gießelmann, E. C. J.; Pöttgen, R.; Janka, O. Z. Anorg. Allg. Chem. 2023, 649, e202300109 (15 pages).10.1002/zaac.202300109Search in Google Scholar
3. Villars, P.; Cenzual, K.; Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2023/24); ASM International®: Materials Park, Ohio (USA), 2023.Search in Google Scholar
4. Schlüter, M.; Kunst, A.; Pöttgen, R. Z. Anorg. Allg. Chem. 2002, 628, 2641–2646; https://doi.org/10.1002/1521-3749(200212)628:12<2641::aid-zaac2641>3.0.co;2-y.10.1002/1521-3749(200212)628:12<2641::AID-ZAAC2641>3.0.CO;2-YSearch in Google Scholar
5. Schlüter, M.; Häussermann, U.; Heying, B.; Pöttgen, R. J. Solid State Chem. 2003, 173, 418–424; https://doi.org/10.1016/s0022-4596(03)00133-6.Search in Google Scholar
6. Hlukhyy, V.; Rodewald, U. C.; Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 2997–3001; https://doi.org/10.1002/zaac.200500294.Search in Google Scholar
7. Dörrscheidt, W.; Schäfer, H. J. Less-Common Met. 1980, 70, P1–P10; https://doi.org/10.1016/0022-5088(80)90282-9.Search in Google Scholar
8. Wiethölter, J.; Koldemir, A.; Reimann, M. K.; Block, T.; Kösters, J.; Janka, O.; Pöttgen, R. Z. Naturforsch. 2023, 78b, 301–306.10.1515/znb-2023-0015Search in Google Scholar
9. Wiethölter, J.; Koldemir, A.; Block, T.; Reimann, M. K.; Klenner, S.; Pöttgen, R. Z. Kristallogr. 2023, 238, 201–208; https://doi.org/10.1515/zkri-2023-0014.Search in Google Scholar
10. Pavlyuk, N.; Chumak, I.; Pavlyuk, V.; Ehrenberg, H.; Indris, S.; Hlukhyy, V.; Pöttgen, R. Z. Naturforsch. 2022, 77b, 727–733.10.1515/znb-2022-0109Search in Google Scholar
11. Eisenmann, B.; May, N.; Müller, W.; Schäfer, H. Z. Naturforsch. 1972, 27b, 1155–1157.10.1515/znb-1972-1008Search in Google Scholar
12. Pöttgen, R.; Gulden, T.; Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
13. Kußmann, D.; Hoffmann, R.-D.; Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.3.co;2-s.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar
14. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
15. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed
16. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
17. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar
18. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282; https://doi.org/10.1515/zkri-2023-0005.Search in Google Scholar
19. Kußmann, D.; Pöttgen, R.; Rodewald, U. C.; Rosenhahn, C.; Mosel, B. D.; Kotzyba, G.; Künnen, B. Z. Naturforsch. 1999, 54b, 1155–1164.10.1515/znb-1999-0911Search in Google Scholar
20. Kneidinger, F.; Salamakha, L.; Bauer, E.; Zeiringer, I.; Rogl, P.; Blaas-Schenner, C.; Reith, D.; Podloucky, R. Phys. Rev. B 2014, 90, 024504 (12 pages); https://doi.org/10.1103/physrevb.90.024504.Search in Google Scholar
21. Block, T.; Seidel, S.; Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218; https://doi.org/10.1515/zkri-2022-0021.Search in Google Scholar
22. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
23. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
24. Mirambet, F.; Chevalier, B.; Gravereau, P.; Etourneau, J. Solid State Commun. 1992, 82, 25–28; https://doi.org/10.1016/0038-1098(92)90400-4.Search in Google Scholar
25. Thuéry, P.; Zolnierek, Z. Solid State Commun. 1993, 85, 485–489; https://doi.org/10.1016/0038-1098(93)90005-8.Search in Google Scholar
26. Purwanto, A.; Robinson, R. A.; Nakotte, H.; Swainson, I. P.; Torikachvili, M. S. J. Appl. Phys. 1996, 79, 6411–6413; https://doi.org/10.1063/1.361887.Search in Google Scholar
27. Pöttgen, R.; Albering, J. H.; Kaczorowski, D.; Jeitschko, W. J. Alloys Compd. 1993, 196, 111–115; https://doi.org/10.1016/0925-8388(93)90579-c.Search in Google Scholar
28. Safronov, S. E.; Gribanov, A. V.; Dunaev, S. F. Inorg. Mater. 2019, 55, 770–779; https://doi.org/10.1134/s002016851907015x.Search in Google Scholar
29. Kurenbaeva, J. M.; Seropegin, Y. D.; Gribanov, A. V.; Bodak, O. I.; Nikiforov, V. N. J. Alloys Compd. 1999, 285, 137–142; https://doi.org/10.1016/s0925-8388(98)00998-0.Search in Google Scholar
30. Liu, H.-P.; Colarieti-Tosti, M.; Broddefalk, A.; Andersson, Y.; Lidström, E.; Eriksson, O. J. Alloys Compd. 2000, 306, 30–39; https://doi.org/10.1016/s0925-8388(00)00768-4.Search in Google Scholar
31. Anand, V. K.; Johnston, D. C. Phys. Rev. B 2015, 91, 184403 (20 pages).10.1103/PhysRevB.91.064427Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Polyphosphoric acid (PPA): a new, highly efficient catalyst for the synthesis of functionalized azepino phthalazine hybrids
- State-dependent gas chromatography based on flexible and tunable porous coordination polymers
- A novel samarium(III) orotate complex [NaSm(orotate)4(H2O)10]·3H2O – crystal structure and vibrational spectra
- (NH4)4[SO4][CB11H12]2: a new double salt with carbaborate anions crystallizing in a monoclinic variant of the anti-K2NiF4-type structure
- K[Hg(CN)2][H3CCOO]: a pseudo-double salt with mercury(II)-cyanide molecules imbedded into an ionic matrix of potassium acetate
- An aminosilyl-functionalized zincocene
- The stannide SrPd2.23Sn1.73 with CaBe2Ge2-type structure
- Note
- Revisiting Na[C(CN)3] – refinement of the crystal structure from X-ray powder diffraction data, the Raman and IR spectra
- Corrigendum
- Corrigendum zu: Die Serie caesiumhaltiger Thioarsenate(V) der Lanthanoide vom Formeltyp Cs3 Ln[AsS4]2 mit Ln = La–Nd und Sm