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Theoretical description of chromatographic separation processes

In the following the derivation of the temporal development of the analyte distribution in a capillary

column is presented. The derivation follows the concept developed by M. Golay but uses a form

based on the Laplace transformation presented by A. Pethö. The work carried out by A. Pethö

relevant for the main article was unfortunately not published in a journal and is only available

in German. Because of this reason, the derivation is here more or less repeated with additional

intermediate steps to make it easier for the reader to follow and to understand the full derivation.1

The continuity equation for the capillaries reads

∫∫∫ [
−D div (grad(c))+div(c~u)+

∂c
∂ t

+Q
]

dτ = 0 (1)

(dτ denotes here a volume element.)

The flow term Q describes the initial injection of the analytes and the transition to and from the sta-

tionary phase. Thus, after injection, the flow term is solely determined by the boundary condition

for the analyte concentration between the gas and the stationary phase and describes the amount of

analyte that is transferred between these phases.

Figure 1: Analyte distribution in the column

After injection, it then can be expressed by
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Q =
As

Vg
(kagb− kd fb) =

Vs

dsVg
(kagb− kd fb) (2)

with g being the concentration in the gas phase, f the concentration in the stationary phase, As the

surface between stationary and mobile phase per column length, Vg and Vs the respective volume

per column length of the gasphase and the stationary phase, and ka and kd the adsorption and the

desorption rate constants. By introducing the scaled concentration f = aVs/Vg and the partition

coefficient K = ka/kd and using the abbreviation k = KVs/Vg one obtains

Q =
kd

d f
(kgb− fb) (3)

For the analysis that follows, the continuity equation for the gas and stationary phase is regarded

separately, with the respective analyte concentrations labled g and f , coupled by the boundary

conditions. In addition several assumptions are made:

1) u will only have a component in the direction along the capillary length and is considered to be

constant.

~u =


ux

uy

uz

=


ux

0

0

 (4)

∂ux

∂x
= 0 (5)

2) D is concentration independent

3) In the following, the gas phase will be represented using cylindrical coordinates but the descrip-

tion of the stationary phase will be still in cartesian coordinates. In contrary, the stationary phase is

so thin that the a radial change of its volume is neglected and the description of the concentration

changes will still be in cartesian coordinates.

3



4) There is no flow in the stationary phase (⇒ f~u≡ 0).

From these assumptions, it follows that

D∆g−u
∂g
∂x
− ∂g

∂ t
= 0 (6)

D f ∆ f − ∂g
∂ t

= 0 (7)

The transition to cylindrical coordinates reduces the problem to a two dimensional one because

of the assumption that there is no variation of the concentration in respect to the azimuth angle φ

because of the cylindrical symmetry of the problem.

For the gas phase:

Dg

(
∂ 2g
∂x2 +

∂ 2g
∂ρ2 +

1
ρ

∂g
∂ρ

)
−2u

∂g
∂x

(
1− ρ2

r2

)
− ∂g

∂ t
= 0 (8)

and for the stationary phase with r−d ≤ ρ ≤ r

D f

(
∂ 2 f
∂x2 +

∂ 2 f
∂ρ2 +

1
ρ

∂ f
∂ρ

)
− ∂ f

∂ t
= 0 (9)

Initial and boundary conditions:

g(t = 0) = 0 ; f (t = 0) = 0 (10)

g(x = 0) = G0(t) ;
[

∂ f
∂x

]
x=0

= 0 (11)

[
∂g
∂ρ

]
ρ=0

= 0 ;
[

∂ f
∂y

]
y=0

= 0 (12)
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Q =−AsDg

[
∂g
∂ρ

]
r
=−

2Dg

r

[
∂g
∂ρ

]
r
=

kd

d f
(kgb− fb) (13)

and

Q =
D f

d f

[
∂ f
∂y

]
y=d f

=
kd

d f
(kgb− fb) (14)

In order to simplfy the problem, we shift the description from the total concentration to the devia-

tion from the mean of the concentration. This will introduce a small quantity that will help to find

suitable approximations.

The mean in cylindrical coordinates for the analyte concentration in the gas phase is given by:

G =

∫ r
0 gρdρ∫ r
0 ρdρ

=
2
r2

∫ r

0
gρdρ (15)

and for the stationary phase in cartesian coordinates by:

F =
1
d f

∫ d f

0
f dy (16)

The deviations from the mean are

∆G = g−G (17)

∆F = f −F (18)

If one stipulates that in the narrow tube the diffusional effects smooth out the concentration gradi-

ents across the capillary diameter comparably fast, the assumption

∆G� G

should be valid. The simplification of the analyte distribution dynamics by exploiting this relation-
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ship is called the Taylor Golay approximation.

The application of the operator representing the averaging that ocurrs in Eq. 15

2
r2

∫
ρ . . .dρ

allows to write the continuity equation for the mean concentration in the gas phase:

From the transition to the radial mean of equation 8) one obtains

2
r2

∫ r

0

[
Dg

(
∂ 2g
∂x2 +

∂ 2g
∂ρ2 +

1
ρ

∂g
∂ρ

)
−2u

∂g
∂x

(
1− ρ2

r2

)
− ∂g

∂ t

]
ρdρ = 0 (19)

Dg

(
∂ 2G
∂x2 +

2
r2

∫ r

0

(
∂ 2g
∂ρ2 +

1
ρ

∂g
∂ρ

)
ρdρ

)
− 4u

r2

∫ r

0

∂g
∂x

(
1− ρ2

r2

)
ρdρ− ∂G

∂ t
= 0 (20)

The integral resulting from first term in the first integral kernel can be simplified using partial

integration and the given boundary condition to

∫ r

0

∂ 2g
∂ρ2 ρdρ = r

∂g
∂ρ

∣∣∣∣
r
− (g(r)−g(0)) (21)

and with

∫ r

0

(
1
ρ

∂g
∂ρ

)
ρdρ =

∫ r

0

(
∂g
∂ρ

)
dρ = g(r)−g(0) (22)

for the second term in this integral kernel one obtains for the complete integral:

∫ r

0

(
∂ 2g
∂ρ2 +

1
ρ

∂g
∂ρ

)
ρdρ = r

∂g
∂ρ

∣∣∣∣
r
=− r2kd

2Dgd f
(kgb− fb) =−

r2

2Dg
Q (23)

Consequently, Eq. (20) reads:

Dg
∂ 2G
∂x2 −

4u
r2

∫ r

0

∂g
∂x

(
1− ρ2

r2

)
ρdρ− ∂G

∂ t
−Q = 0 (24)
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In order to obtain a differential equation that captures only the dynamics of the small quantity ∆G,

we subtract from the continuity equation of the complete concentration variable g (Eq. 8) the one

dealing with the mean (Eq. 24). One obtains if g is replaced in it by ∆G+G:

Dg

[
∂ 2(G+∆G)

∂x2 +
1
ρ

∂∆G
∂ρ

+
∂ 2∆G
∂ρ2

]
−2u

(
1− ρ2

r2

)
∂ (G+∆G)

∂x
− ∂ (G+∆G)

∂ t

−Dg
∂ 2G
∂x2 +

4u
r2

∫ r

0

∂ (G+∆G)

∂x

(
1− ρ2

r2

)
ρdρ− ∂G

∂ t
−Q = 0 (25)

because ∆G� G all ∆G terms are neglected in the G+∆G terms. This step is the major simplifi-

cation step of the Taylor-Golay approximation. One obtains:

Dg

(
1
ρ

∂∆G
∂ρ

+
∂ 2∆G
∂ρ2

)
−u
(

1−2
ρ2

r2

)
∂G
∂x

+Q = 0 (26)

This result is a linear differential equation of the independent variablen ∆G depending on ρ , which

can be solved. The solution fulfilling the conditions

[
∂∆G
∂ρ

]
ρ=0

= 0 ,
∫ r

0
∆Gρdρ = 0

is given by:

∆G = g−G =

(
ρ

2− ρ4

2r2 −
r2

3

)
u

4Dg

∂G
∂x
−
(

ρ
2− r2

2

)
Q

4Dg
(27)

or

g = G+

(
ρ

2− ρ4

2r2 −
r2

3

)
u

4Dg

∂G
∂x
−
(

ρ
2− r2

2

)
Q

4Dg
(28)

Having expressed the g in terms of the integral quantity G allows to eliminate the factor ∂g
∂x from

equation 20, the equation governing the evolution of the integral quantity G, by taking the deriva-

tive of the last equation in respect to x and to insert the result accordingly.
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(
Dg +

u2r2

48Dg

)
∂ 2G
∂x2 −u

∂G
∂x
− ∂G

∂ t
−
(

Q+
ur2

24Dg

∂Q
∂x

)
= 0 (29)

Since it will be needed further down, we also list equation 28 for the boundary between the sta-

tionary and the gas phase:

gb = G+

(
ur2

24Dg

)
∂G
∂x
− r2

8Dg
Q (30)

The solution of the differential equation 29 for a given set of various initial and boundary conditions

would give the development of the intgral analyte distribution along the capillary.

For the presented work only a delta peak injection of the analyte is assumed.

The boundary conditions that need to be obeyed are:

D f
∂ 2 f
∂y2 − ∂ f

∂ t = 0 (0≤ ρ ≤ d f )

f (t = 0) = 0

f (y = d f ) = fb

G(t = 0) = 0

G(x = 0) = G0(t0)

G(x→ ∞) = limited

[∂ f
∂y ]y=0 = 0 (no flux boundary conditions to the tube walls)

F =
∫ d f

0 f dy/
∫ d f

0 dy = 1
d f

∫ d f
0 f dy

Q = ∂F
∂ t =

2D f
rd f

[
∂ f
∂y

]
y=d f

= 2
r (kagb− kd fb)

In the following there will not be the attempt to solve this differential equation completely but to

extract information about the solution, i.e. the spreading of the peaks as a function of their retention

times. In order to regards the boundary conditions algebraically, the equations will be subjected to

the Laplace transformation. The following abbreviations are used
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L G(t) = Γ(s) =
∫

∞

0
e−stG(t)dt

analogously

L g = γ , L F = Φ , L f = ϕ

In order to further proceed, and to solve the coupled system of the continuity equation in the

stationary and mobile phase, we take the Laplace transformed of the continuity equation of the

stationary phase which yields

d2ϕ

dy2 −
s

D f
ϕ = 0

with ϕ(y = d f ) = ϕb and
[

dϕ

dy

]
y=0

= 0.

the differential equation can be solved

ϕ = ϕb
cosh

√
sy2/D f

cosh
√

d2
f /D f

From which Φ can be obtained if it is put in

L

(
1
d f

∫ d f

0
f dy
)
=

1
d f

∫ d f

0
ϕdy = ϕb

tanh
√

sy2/D f√
sy2/D f

and one obtains for

sΦ =
kd

d f
(qΓ−ϕb)

sΦ = ϕb
D f

d2
f

√
sd2

f /D f tanh
√

sd2
f /D f

and
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sΦ = kΓ

d f

kd
+

1(
D f

d2
f

√
sd2

f /D f tanh
√

sd2
f /D f

)

−1

= kΓψ

This equation allows to eliminate Φ from the respective Laplace transformed continuity equation

for G. The variable Γ in previous equation couples the fields in the stationary and the mobile phase.

As an approximation we replace Γ, the L -transformed averaged analyte field by the value of g by

the L -transformed of its value at the boundary between the stationary and mobile phase, gb, which

is labeled as γb. This quantity is given by the the L -transform of 30 which is

L gb = γb = Γ+
ur2

24Dg

∂Γ

∂x
− r2

8Dg
sΦ

After having carried out the replacement the equation for Φ reads

sΦ = kψ

(
Γ+

ur2

24Dg

∂Γ

∂x

)(
1+

kr2

8Dg
ψ

)−1

(31)

Laplace-transforming equation 29 using Q = ∂F
∂ t yields

(
Dg +

ur2

48Dg

)
∂ 2G
∂x2 −u

∂G
∂x
− sΓ− s

(
Φ+

ur2

24Dg

∂Φ

∂x

)
= 0 (32)

The variable Φ can now be eliminated using equation 31. The resulting differential equation is of

the form

P∗
∂ 2Γ

∂x2 +R∗
∂Γ

∂x
+S∗Γ = 0 (33)

With

P∗ =
(

Dg +
ur2

48Dg

)
− kψ

(
1+

kr2

8Dg
ψ

)−1( ur2

24Dg

)2
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R∗ =

[
1+ kψ

(
1+

kr2

8Dg
ψ

)−1 r2

12Dg

]
u

S∗ = s+ kψ

(
1+

kr2

8Dg
ψ

)−1

The differential equation Equation 33 needs to be solved obying the Laplace transformed boundary

conditions G(x = 0) = G0 and G(x→ ∞) = limited which ist Γ(x = 0) = Γ0 and Γ(x→ ∞) =

limited. As can easily be checked, the solution is given by:

Γ = Γ0exp

[
R∗−

√
R2
∗+4P∗S∗

2P∗
x

]
= Γ0Γ∗

.

For the derivatives in respect to s we obtain:

Γ
′
∗ = x

(
R∗−

√
R2
∗+4P∗S∗

2P∗

)′
Γ∗

Γ
′′
∗ =

x2

[(
R∗−

√
R2
∗+4P∗S∗

2P∗

)′]2

+ x

(
R∗−

√
R2
∗+4P∗S∗

2P∗

)′′Γ∗

.

At s = 0 one obtains ψ(s = 0) = 0ψ = 0 and with it the following relations hold:

0P∗ = Dg +
u2r2

48Dg
; 0R∗ = u ; 0S∗ = 0

and 0Γ∗ = 1.

Using 0ψ ′ = 1 at s = 0 as well as 0P′∗ = k
(

ur2

24Dg

)2
; 0R′∗ =

kr2u
12Dg

; 0S′∗ = 1+ k, the first

derivative of Γ at s = 0 is given by

0Γ
′
∗ = x

(
R∗−

√
R2
∗+4P∗S∗

2P∗

)′
s=0

=−1+ k
u

x
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.

Taking into account

0ψ
′′ =−

−d f

kd
−

2d2
f

3D f

for

0R′′∗ =
ur2

12Dg
0S′′∗

and

0S′′∗ =−k

(
2d f

kd
+

2d2
f

3D f
+

kr2

4Dg

)

to obtain 0Γ′′∗ at s = 0 one arrives at

0Γ
′′
∗ =

(
1+ k

u

2)
x2 + x

(
R∗−

√
R2
∗+4P∗S∗

2P∗

)′′
s=0

Filling in all terms leads to

0Γ
′′
∗ =

(
1+ k

u

)2

x2 +

[
2Dg

u
+

1+6k+11k2

24(1+ k)2
ru2

Dg
+

2k
(1+ k)2

d f u
kd

+
2k

3(1+ k)2

d2
f u

D f

](
1+ k

u

)2

x

The star as the index in above’s expressions, indicates the development of the Γ from the Γ of the

initial distribution, which is given by Γ0, thus the relation Γ = Γ∗Γ0 holds. Having derived 0Γ,0Γ′,

and 0Γ′′ for an (here initial) analyte distribution function, the moments of this distribution can be

calculated by using

τ =−0Γ
(1)/0Γ

(0) and τ
2 +σ

2 = 0Γ
(2)/0Γ

(1) (34)

.
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These equations result from the definition of the moments of the distribution G which are given

by:

M(i) =
∫

∞

0
t iG(t)dt (35)

τ = M(1)/M(0) (36)

σ
2 =

∫
∞

0
(t− τ)2G(t)dt/M(0) = (M(2)/M(0))− τ

2 (37)

L G(t) = Γ(s) =
∫

∞

0
e−stG(t)dt (38)

with

M(i=0) = Γ(s = 0) = 0Γ0 the index 0 on the left side indicates s = 0, in the following a right hand

sided index equal to zero will indicate that the quantity is considered at (x = 0).

For i > 0 there is

M(i) = (−1)i
[

diΓ

dt i

]
s=0
≡ (−1)i

0Γ
(i) (39)

.

Furthermore the following relations also hold:

τ = τ0 + τ∗ (40)

σ
2 = σ

2
0 +σ

2
∗ (41)

(42)

From which the development of the theoretical plate height can be obtained.
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H = x
(

σ∗
τ∗

)2

= x
σ2−σ2

0
(τ− τ0)2 (43)

Linker synthesis

The linker synthesis started from the commercially available 2,5 dihydroxy-1,4-benzenedicarboxylic

acid (Sigma Aldrich 98 %) which was esterificated in MeOH with BF3·Et2O as catalyst and water

scavenger under reflux for 8 h, to yield the dimethyl ester dimethyl 2,5-dihydroxy-1,4-benzenedicarboxylate.

The product was then dried in vacuum. The actual synthesis of the final linker 2,5-diethoxy-1,4-

benzene dicarboxylic acid compounds was carried out as Williamson etherification described in

Ref.2

(872 mg, 4.15 mmol) dimethyl 2,5-dihydroxy-1,4-benzenedicarboxylate and (2.76 g) K2CO3 were

suspended in 35 mL N,N-dimethylformamide (DMF). Subsequently, 0.746 mL ethyl bromide were

added dropwise, the solution heated to 85 ◦C and kept at this temperature for 3 h. Afterwards, the

solvent was removed by applying laboratory vacuum (10−1 mbar) the remainder was mixed with

40 mL H2O and 0.4 g NaOH. The solution was heated an kept under reflux for 4 h. After subse-

quent cooling to room temperature, 23 mL conc. hydrochloric acid were added. The product was

washed with H2O (20 mL) filtered off and dried at 80 ◦C for 1.5 h and recrystallized in THF (yield

85 %).

The coating of chromatographic capillaries with a pillar-layered

metal-organic framework ([Zn2(DE-bdc)2(dabco)]n)

For the coating of the capillaries liquids were pumped by standard polyethylene syringes (1 mL)

throug the capillaries. The coating of a fused silica capillary (CS Chromatographie-service, inner
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diameter 0.32 mm, length 16 m) starts with its activation by filling the capillary with 1 M aqueous

KOH solution. After 30 min the capillary was emptied by pressing air through it. Afterwards the

procedure was repeated followed by neutral (water) rinsing, i.e. pressing water through the capil-

lary until the the outflowing water reaches pH 7. The preparation proceeds by filling the capillary

with 1 M hydrochloric acid and applying it for 30 min followd by another neutral rinsing cycle and

letting the capillary dry in a drying cabinet over night by flowing a stream of argon through it.

For the coating by liquid phase epitaxy, three solutions need to be prepared.

a) 102.98 mg (0.35 mmol) of zinc acetate dihydrate (Zn(CH3CO2)2·2H2O) was dissolved in 25 mL

ethanol (precursor solution).

b) 26.31 mg (0.24 mmol) of (1,4-diazabicyclo[2.2.2]octane) (dabco) was dissolved in 25 mL ethanol

(pillar solution).

c) 696 mg (3.24 mmol) of the prepared linker compound 2,5-bis(ethoxy)-1,4-benzenedicarboxylic

acid (leading to the linker 2,5-bis(ethoxy)-1,4-benzenedicarboxylate, DE-bdc) was dissolved in

25 mL of a 1:1 mixture (by volume) of ethanol and DMF dimethylformamide (linker solution).

One coating cylce consists of injecting 0.5 mL of precursor solution, followed by injecting 0.5 mL

air (air plug) separating the liquids. Subsequently, 0.5 mL of the linker solution are injected also

followed by the injection of another air plug. One cycle ends with the injection of 0.5 mL pillar

solution again followed by an air plug.

For the preparation of the capillaries, 25 of the described cycles were applied. Afterwards, the cap-

illary was dried in a drying cabinet at the subsequent temperature levels of 60 ◦C, 80 ◦C, and 100 ◦C

held at each temperature level for 2 h with a stream of argon flowing through the capillaries.3

The deposition of the MOF within the capillary has been carried out many time for dicarboxy-

late MOFs of the BDC IRMOF and BDC-DABCO paddle wheel pillar-layered MOFs even with

large bulky alkoxy substituents.4–6 The coating was carried out by the so called Controlled SBU

Approach. By this method, preformed SBUs for example Zn4O(CH3COO)6 in the case of the
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IRMOF series4,7 or Zn2(CH3COO)2 · 2H2O will be used in solution and brought to an exchange re-

action with a solution of dicarboxilic acids in way that a network is created. Because of the small

amount of deposited material, the thickness of the layer is in the range of microns and the diameter

of the capillary is only 0.5 mm, it is not simply possible to perform XRD measurement of the ma-

terial on the inner walls of the GC capillaries. The curvature of the surface further aggravates the

problem. In order to see if the deposition is possible, on can perform the coating procedure in the

same manner of a flat piece of fused silica and perform an XRD measurement with it, see Ref.4

Carrying out the Controlled SBU Approach to deposit various pillar-layered BDC-DABCO MOFs

with very bulky substituents has also been done.6 Conduction the same procedure using BDC with

much smaller ethoxy substituents leads to a dense layer of (MOF) crystals as can be seen in FigS2

and FigS3.

Figure 2: SEM image of material deposited by the Controlled SBU Approach on a capillary wall
using the described procedure3

16



Figure 3: Magnified view of the capillary wall - MOF contact zone measured by SEM3
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