Startseite Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand

  • Juan Shi , Zhen-Xiang Xia , Sheng-Chun Chen EMAIL logo , Ming-Yang He und Qun Chen
Veröffentlicht/Copyright: 6. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Microwave-assisted hydrothermal reaction of 2-fluoro-3,5,6-tri(1H-1,2,4-triazol-1-yl)-1,4-benzenedicarbonitrile (L1) with silver(I) nitrate yields a coordination polymer [Ag3(L2)2(NO3)]n (1), in which the L2 ligand (HL2 = 2-hydroxy-3,5,6-tri(1H-1,2,4-triazol-1-yl)terephthalonitrile) is obtained by in situ ligand transformation from the L1 precursor. HL2 monohydrate has also been isolated by the microwave-mediated hydrolysis of L1 and structurally characterized. Single-crystal X-ray diffraction reveals that HL2 monohydrate comprises a zwitterionic HL2 moiety, while complex 1 displays an infinite L2-bridged double-chain structure. Given that the HL2 molecule has a large conjugated π system, complex 1 exhibits strong blue luminescence in the solid state at room temperature.


Corresponding author: Sheng-Chun Chen, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, PR China, E-mail:

Funding source: Changzhou University

Funding source: Advanced Catalytic and Green Manufacturing Collaborative Innovation Center

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the National Natural Science Foundation of China (21676030), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Advanced Catalytic and Green Manufacturing Collaborative Innovation Center, Changzhou University, and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (ZZZD201807 and BM2012110).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Janiak, C. Dalton Trans. 2003, 14, 2781.10.1039/b305705bSuche in Google Scholar

2. Kitagawa, S., Uemura, K. Chem. Soc. Rev. 2005, 34, 109.10.1039/b313997mSuche in Google Scholar PubMed

3. Kitagawa, S., Matsuda, R. Coord. Chem. Rev. 2007, 251, 2490.10.1016/j.ccr.2007.07.009Suche in Google Scholar

4. Mason, J. A., Veenstra, M., Long, J. R. Chem. Sci. 2014, 5, 32.10.1039/C3SC52633JSuche in Google Scholar

5. Li, J.-R., Kuppler, R. J., Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.10.1039/b802426jSuche in Google Scholar PubMed

6. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.10.1039/C4CS00094CSuche in Google Scholar PubMed

7. Nguyen, T. N., Ebrahim, F. M., Stylianou, K. C. Coord. Chem. Rev. 2018, 377, 259.10.1016/j.ccr.2018.08.024Suche in Google Scholar

8. Medishetty, R., Zareba, J. K., Mayer, D., Samoc, M., Fischer, R. A. Chem. Soc. Rev. 2017, 46, 4976.10.1039/C7CS00162BSuche in Google Scholar

9. Yang, J., Yue, Q., Li, G.-D., Cao, J.-J., Li, G.-H., Chen, J.-S. Inorg. Chem. 2006, 45, 2857.10.1021/ic051557oSuche in Google Scholar PubMed

10. Robin, A. Y., Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127.10.1016/j.ccr.2006.02.013Suche in Google Scholar

11. Pettinari, C., Tabacaru, A., Galli, S. Coord. Chem. Rev. 2016, 307, 1.10.1016/j.ccr.2015.08.005Suche in Google Scholar

12. Zhang, J.-P., Lin, Y.-Y., Zhang, W.-X., Chen, X.-M. J. Am. Chem. Soc. 2005, 127, 14162.10.1021/ja054913aSuche in Google Scholar PubMed

13. Tian, A.-X., Ying, J., Peng, J., Sha, J.-Q., Pang, H.-J., Zhang, P.-P., Chen, Y., Zhu, M., Su, Z.-M. Cryst. Growth Des. 2008, 8, 3717.10.1021/cg800353ySuche in Google Scholar

14. Ling, Y., Chen, Z.-X., Zhou, Y.-M., Weng, L.-H., Zhao, D.-Y. CrystEngComm 2011, 13, 1504.10.1039/C0CE00546KSuche in Google Scholar

15. Zhang, Y.-Q., Blatov, V. A., Zheng, T.-R., Yang, C.-H., Qian, L.-L., Li, K., Li, B.-L., Wu, B. Dalton Trans. 2018, 47, 6189.10.1039/C7DT04682KSuche in Google Scholar PubMed

16. Ding, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z., Yan, S.-P. Cryst. Growth Des. 2009, 9, 593.10.1021/cg8008943Suche in Google Scholar

17. Mu, Y., Han, G., Ji, S., Hou, H., Fan, Y. CrystEngComm 2011, 13, 5943.10.1039/c1ce05129fSuche in Google Scholar

18. Yang, Y., Du, P., Liu, Y.-Y., Ma, J.-F. Cryst. Growth Des. 2013, 13, 4781.10.1021/cg400934zSuche in Google Scholar

19. Wang, Y., Meng, S.-S., Lin, P.-X., Xiao, Y.-W., Ma, Q.-Q., Xie, Q., Chen, Y.-Y., Zhao, X.-J., Chen, J. Inorg. Chem. 2016, 55, 4069.10.1021/acs.inorgchem.6b00433Suche in Google Scholar PubMed

20. Wang, L., Ye, Y., Li, Z., Lin, Q., Ouyang, J., Liu, L., Zhang, Z., Xiang, S. Cryst. Growth Des. 2017, 17, 2081.10.1021/acs.cgd.7b00060Suche in Google Scholar

21. Ding, B., Yang, P., Liu, Y. Y., Wang, Y., Du, G. X. CrystEngComm 2013, 15, 2490.10.1039/c3ce26998aSuche in Google Scholar

22. Perry, J. J.IV, Perman, J. A., Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400.10.1039/b807086pSuche in Google Scholar PubMed

23. Thomas-Hillman, I., Laybourn, A., Dodds, C., Kingman, S. W. J. Mater. Chem. A 2018, 6, 11564.10.1039/C8TA02919ASuche in Google Scholar

24. Phetmung, H., Wongsawat, S., Pakawatchai, C., Harding, D. J. Inorg. Chim. Acta 2009, 362, 2435.10.1016/j.ica.2008.10.038Suche in Google Scholar

25. Ni, Z., Masel, R. I. J. Am. Chem. Soc. 2006, 128, 12394.10.1021/ja0635231Suche in Google Scholar PubMed

26. Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.10.1002/anie.200400655Suche in Google Scholar PubMed

27. Taddei, M., Dau, P. V., Cohen, S. M., Ranocchiari, M., Bokhoven, J. A. V., Costantino, F., Sabatini, S., Vivani, R. Dalton Trans. 2015, 44, 14019.10.1039/C5DT01838BSuche in Google Scholar

28. Choi, J.-S., Son, W.-J., Kim, J., Ahn, W.-S. Microporous Mesoporous Mater. 2008, 116, 727.10.1016/j.micromeso.2008.04.033Suche in Google Scholar

29. Seo, Y.-K., Hundal, G., Jang, I. T., Hwang, Y. K., Jun, C.-H., Chang, J.-S. Microporous Mesoporous Mater. 2009, 119, 331.10.1016/j.micromeso.2008.10.035Suche in Google Scholar

30. Zou, G.-D., He, Z.-Z., Tian, C.-B., Zhou, L.-J., Feng, M.-L., Zhang, X.-D., Huang, X.-Y. Cryst. Growth Des. 2014, 14, 4430.10.1021/cg500531kSuche in Google Scholar

31. Stefanczyk, O., Korzeniak, T., Nitek, W., Rams, M., Sieklucka, B. Inorg. Chem. 2011, 50, 8808.10.1021/ic200689aSuche in Google Scholar PubMed

32. Lin, Z., Wragg, D. S., Morris, R. E. Chem. Commun. 2006, 19, 2021.10.1039/B600814CSuche in Google Scholar

33. Lin, W., Ye, L., Liu, X., Yuan, L., Lu, X., Jiang, J. Inorg. Chem. Commun. 2008, 11, 1250.10.1016/j.inoche.2008.07.020Suche in Google Scholar

34. Chen, S.-C., Chai, N.-N., Huang, K.-L., Tian, F., Shi, J., He, M.-Y., Chen, Q. Inorg. Chim. Acta 2019, 494, 187.10.1016/j.ica.2019.05.033Suche in Google Scholar

35. Behrens, K., Mondal, S. S., Nöske, R., Baburin, I. A., Leoni, S., Günter, C., Weber, J., Holdt, H.-J. Inorg. Chem. 2015, 54, 10073.10.1021/acs.inorgchem.5b01952Suche in Google Scholar PubMed

36. Mondal, S. S., Dey, S., Attallah, A. G., Krause-Rehberg, R., Janiak, C., Holdt, H.-J. Dalton Trans. 2017, 46, 4824.10.1039/C7DT00350ASuche in Google Scholar

37. Wei, Q., Qiao, C., Xia, Z., Chen, S. Synthetic Commun. 2013, 43, 3181.10.1080/00397911.2013.772637Suche in Google Scholar

38. Matos, C. R. M. O., Monteiro, F. G. A., da, F., Miranda, S., Pinheiro, C. B., Bond, A. D., Ronconi, C. M. Cryst. Growth Des. 2017, 17, 5965.10.1021/acs.cgd.7b01082Suche in Google Scholar

39. Sun, D., Xu, Q.-J., Ma, C.-Y., Zhang, N., Huang, R.-B., Zheng, L.-S. CrystEngComm 2010, 12, 4161.10.1039/c0ce00017eSuche in Google Scholar

40. Xia, C.-K., Lu, C.-Z., Zhang, Q.-Z., He, X., Zhang, J.-J., Wu, D.-M. Cryst. Growth Des. 2005, 5, 1569.10.1021/cg050040kSuche in Google Scholar

41. Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J., Hou, H.-W. Dalton Trans. 2007, 48, 5710.10.1039/b709204kSuche in Google Scholar PubMed

42. Spek, A. L., Platon, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht (The Netherlands), 2002.Suche in Google Scholar

43. Sheldrick, G. M., Sadabs, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen (Germany), 2002.Suche in Google Scholar

44. Saint, Software Reference Manual, Bruker Analytical X-ray; Instruments Inc.: Madison, Wisconsin (USA), 1998.Suche in Google Scholar

45. Sheldrick, G. M., Shelxtl NT (version 5.1); Bruker Analytical X-ray Instruments Inc.: Madison, Wisconsin (USA), 2001.Suche in Google Scholar

46. Sheldrick, G. M., Shelxs/l-97, Programs for Crystal Structure Determination; University of Göttingen: Göttingen (Germany), 1997.Suche in Google Scholar

47. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.10.1107/S0108767390000277Suche in Google Scholar

48. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed

Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1515/znb-2020-0019.

Received: 2020-01-26
Accepted: 2020-03-15
Published Online: 2020-07-06
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Research articles
  4. Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
  5. Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
  6. Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
  7. Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
  8. Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
  9. The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
  10. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
  11. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
  12. Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
  13. High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
  14. High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
  15. Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
  16. Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
  17. New compounds of the Li2MSn3S8 type
  18. Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
  19. Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
  20. Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
  21. Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
  22. Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
  23. Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
  24. Notes
  25. La5Ir1.73In4.27 with Lu5Ni2In4-type structure
  26. The scandium-rich indide Sc50Pt13.47In2.53
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0019/html
Button zum nach oben scrollen