Abstract
Microwave-assisted hydrothermal reaction of 2-fluoro-3,5,6-tri(1H-1,2,4-triazol-1-yl)-1,4-benzenedicarbonitrile (L1) with silver(I) nitrate yields a coordination polymer [Ag3(L2)2(NO3)]n (1), in which the L2 ligand (HL2 = 2-hydroxy-3,5,6-tri(1H-1,2,4-triazol-1-yl)terephthalonitrile) is obtained by in situ ligand transformation from the L1 precursor. HL2 monohydrate has also been isolated by the microwave-mediated hydrolysis of L1 and structurally characterized. Single-crystal X-ray diffraction reveals that HL2 monohydrate comprises a zwitterionic HL2 moiety, while complex 1 displays an infinite L2-bridged double-chain structure. Given that the HL2 molecule has a large conjugated π system, complex 1 exhibits strong blue luminescence in the solid state at room temperature.
Funding source: Changzhou University
Funding source: Jiangsu Key Lab of Advanced Catalytic Materials and Technology
Funding source: Advanced Catalytic and Green Manufacturing Collaborative Innovation Center
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This research was supported by the National Natural Science Foundation of China (21676030), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Advanced Catalytic and Green Manufacturing Collaborative Innovation Center, Changzhou University, and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (ZZZD201807 and BM2012110).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Janiak, C. Dalton Trans. 2003, 14, 2781.10.1039/b305705bSuche in Google Scholar
2. Kitagawa, S., Uemura, K. Chem. Soc. Rev. 2005, 34, 109.10.1039/b313997mSuche in Google Scholar PubMed
3. Kitagawa, S., Matsuda, R. Coord. Chem. Rev. 2007, 251, 2490.10.1016/j.ccr.2007.07.009Suche in Google Scholar
4. Mason, J. A., Veenstra, M., Long, J. R. Chem. Sci. 2014, 5, 32.10.1039/C3SC52633JSuche in Google Scholar
5. Li, J.-R., Kuppler, R. J., Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.10.1039/b802426jSuche in Google Scholar PubMed
6. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.10.1039/C4CS00094CSuche in Google Scholar PubMed
7. Nguyen, T. N., Ebrahim, F. M., Stylianou, K. C. Coord. Chem. Rev. 2018, 377, 259.10.1016/j.ccr.2018.08.024Suche in Google Scholar
8. Medishetty, R., Zareba, J. K., Mayer, D., Samoc, M., Fischer, R. A. Chem. Soc. Rev. 2017, 46, 4976.10.1039/C7CS00162BSuche in Google Scholar
9. Yang, J., Yue, Q., Li, G.-D., Cao, J.-J., Li, G.-H., Chen, J.-S. Inorg. Chem. 2006, 45, 2857.10.1021/ic051557oSuche in Google Scholar PubMed
10. Robin, A. Y., Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127.10.1016/j.ccr.2006.02.013Suche in Google Scholar
11. Pettinari, C., Tabacaru, A., Galli, S. Coord. Chem. Rev. 2016, 307, 1.10.1016/j.ccr.2015.08.005Suche in Google Scholar
12. Zhang, J.-P., Lin, Y.-Y., Zhang, W.-X., Chen, X.-M. J. Am. Chem. Soc. 2005, 127, 14162.10.1021/ja054913aSuche in Google Scholar PubMed
13. Tian, A.-X., Ying, J., Peng, J., Sha, J.-Q., Pang, H.-J., Zhang, P.-P., Chen, Y., Zhu, M., Su, Z.-M. Cryst. Growth Des. 2008, 8, 3717.10.1021/cg800353ySuche in Google Scholar
14. Ling, Y., Chen, Z.-X., Zhou, Y.-M., Weng, L.-H., Zhao, D.-Y. CrystEngComm 2011, 13, 1504.10.1039/C0CE00546KSuche in Google Scholar
15. Zhang, Y.-Q., Blatov, V. A., Zheng, T.-R., Yang, C.-H., Qian, L.-L., Li, K., Li, B.-L., Wu, B. Dalton Trans. 2018, 47, 6189.10.1039/C7DT04682KSuche in Google Scholar PubMed
16. Ding, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z., Yan, S.-P. Cryst. Growth Des. 2009, 9, 593.10.1021/cg8008943Suche in Google Scholar
17. Mu, Y., Han, G., Ji, S., Hou, H., Fan, Y. CrystEngComm 2011, 13, 5943.10.1039/c1ce05129fSuche in Google Scholar
18. Yang, Y., Du, P., Liu, Y.-Y., Ma, J.-F. Cryst. Growth Des. 2013, 13, 4781.10.1021/cg400934zSuche in Google Scholar
19. Wang, Y., Meng, S.-S., Lin, P.-X., Xiao, Y.-W., Ma, Q.-Q., Xie, Q., Chen, Y.-Y., Zhao, X.-J., Chen, J. Inorg. Chem. 2016, 55, 4069.10.1021/acs.inorgchem.6b00433Suche in Google Scholar PubMed
20. Wang, L., Ye, Y., Li, Z., Lin, Q., Ouyang, J., Liu, L., Zhang, Z., Xiang, S. Cryst. Growth Des. 2017, 17, 2081.10.1021/acs.cgd.7b00060Suche in Google Scholar
21. Ding, B., Yang, P., Liu, Y. Y., Wang, Y., Du, G. X. CrystEngComm 2013, 15, 2490.10.1039/c3ce26998aSuche in Google Scholar
22. Perry, J. J.IV, Perman, J. A., Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400.10.1039/b807086pSuche in Google Scholar PubMed
23. Thomas-Hillman, I., Laybourn, A., Dodds, C., Kingman, S. W. J. Mater. Chem. A 2018, 6, 11564.10.1039/C8TA02919ASuche in Google Scholar
24. Phetmung, H., Wongsawat, S., Pakawatchai, C., Harding, D. J. Inorg. Chim. Acta 2009, 362, 2435.10.1016/j.ica.2008.10.038Suche in Google Scholar
25. Ni, Z., Masel, R. I. J. Am. Chem. Soc. 2006, 128, 12394.10.1021/ja0635231Suche in Google Scholar PubMed
26. Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.10.1002/anie.200400655Suche in Google Scholar PubMed
27. Taddei, M., Dau, P. V., Cohen, S. M., Ranocchiari, M., Bokhoven, J. A. V., Costantino, F., Sabatini, S., Vivani, R. Dalton Trans. 2015, 44, 14019.10.1039/C5DT01838BSuche in Google Scholar
28. Choi, J.-S., Son, W.-J., Kim, J., Ahn, W.-S. Microporous Mesoporous Mater. 2008, 116, 727.10.1016/j.micromeso.2008.04.033Suche in Google Scholar
29. Seo, Y.-K., Hundal, G., Jang, I. T., Hwang, Y. K., Jun, C.-H., Chang, J.-S. Microporous Mesoporous Mater. 2009, 119, 331.10.1016/j.micromeso.2008.10.035Suche in Google Scholar
30. Zou, G.-D., He, Z.-Z., Tian, C.-B., Zhou, L.-J., Feng, M.-L., Zhang, X.-D., Huang, X.-Y. Cryst. Growth Des. 2014, 14, 4430.10.1021/cg500531kSuche in Google Scholar
31. Stefanczyk, O., Korzeniak, T., Nitek, W., Rams, M., Sieklucka, B. Inorg. Chem. 2011, 50, 8808.10.1021/ic200689aSuche in Google Scholar PubMed
32. Lin, Z., Wragg, D. S., Morris, R. E. Chem. Commun. 2006, 19, 2021.10.1039/B600814CSuche in Google Scholar
33. Lin, W., Ye, L., Liu, X., Yuan, L., Lu, X., Jiang, J. Inorg. Chem. Commun. 2008, 11, 1250.10.1016/j.inoche.2008.07.020Suche in Google Scholar
34. Chen, S.-C., Chai, N.-N., Huang, K.-L., Tian, F., Shi, J., He, M.-Y., Chen, Q. Inorg. Chim. Acta 2019, 494, 187.10.1016/j.ica.2019.05.033Suche in Google Scholar
35. Behrens, K., Mondal, S. S., Nöske, R., Baburin, I. A., Leoni, S., Günter, C., Weber, J., Holdt, H.-J. Inorg. Chem. 2015, 54, 10073.10.1021/acs.inorgchem.5b01952Suche in Google Scholar PubMed
36. Mondal, S. S., Dey, S., Attallah, A. G., Krause-Rehberg, R., Janiak, C., Holdt, H.-J. Dalton Trans. 2017, 46, 4824.10.1039/C7DT00350ASuche in Google Scholar
37. Wei, Q., Qiao, C., Xia, Z., Chen, S. Synthetic Commun. 2013, 43, 3181.10.1080/00397911.2013.772637Suche in Google Scholar
38. Matos, C. R. M. O., Monteiro, F. G. A., da, F., Miranda, S., Pinheiro, C. B., Bond, A. D., Ronconi, C. M. Cryst. Growth Des. 2017, 17, 5965.10.1021/acs.cgd.7b01082Suche in Google Scholar
39. Sun, D., Xu, Q.-J., Ma, C.-Y., Zhang, N., Huang, R.-B., Zheng, L.-S. CrystEngComm 2010, 12, 4161.10.1039/c0ce00017eSuche in Google Scholar
40. Xia, C.-K., Lu, C.-Z., Zhang, Q.-Z., He, X., Zhang, J.-J., Wu, D.-M. Cryst. Growth Des. 2005, 5, 1569.10.1021/cg050040kSuche in Google Scholar
41. Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J., Hou, H.-W. Dalton Trans. 2007, 48, 5710.10.1039/b709204kSuche in Google Scholar PubMed
42. Spek, A. L., Platon, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht (The Netherlands), 2002.Suche in Google Scholar
43. Sheldrick, G. M., Sadabs, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen (Germany), 2002.Suche in Google Scholar
44. Saint, Software Reference Manual, Bruker Analytical X-ray; Instruments Inc.: Madison, Wisconsin (USA), 1998.Suche in Google Scholar
45. Sheldrick, G. M., Shelxtl NT (version 5.1); Bruker Analytical X-ray Instruments Inc.: Madison, Wisconsin (USA), 2001.Suche in Google Scholar
46. Sheldrick, G. M., Shelxs/l-97, Programs for Crystal Structure Determination; University of Göttingen: Göttingen (Germany), 1997.Suche in Google Scholar
47. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.10.1107/S0108767390000277Suche in Google Scholar
48. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed
Supplementary material
Supplementary data to this article can be found online at https://doi.org/10.1515/znb-2020-0019.
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53