Home Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
Article
Licensed
Unlicensed Requires Authentication

Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x

  • Yaroslav Kalychak , Mariya Dzevenko EMAIL logo , Volodymyr Babizhetskyy , Marek Daszkiewicz and Lubomir Gulay
Published/Copyright: July 6, 2020
Become an author with De Gruyter Brill

Abstract

The crystal structures of the solid solution LaNi5–xInx (x = 0.51) and the ternary compound LaNi9–xIn2+x (x = 0.80) have been investigated by single-crystal X-ray data. The LaNi5–xInx phase is isotypic with CaCu5: space group P6/mmm, a = 5.042(2), c = 4.009(1) Å. The crystal structure investigation of LaNi9–xIn2+x (x = 0.80) was performed at T = 295 and 100 K: YNi9In2 type, space group P4/mbm, a = 8.3976(3), c = 5.0439(3) Å for T = 295 K and a = 8.3814(2), c = 5.0352(2) Å for T = 100 K. The lanthanum atoms are located on split positions 2a (0 0 0) and 4e (0 0 0.05).


Corresponding author: Mariya Dzevenko, Chemical Faculty,Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, UA-79005, Lviv, Ukraine, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tyvanchuk, Y. B., Zaremba, V. I., Akselrud, L. G., Szytula, A., Kalychak, Y. M. J. Alloys Compd. 2017, 704, 717–723. http://dx.doi.org/10.1016/j.jallcom.2017.02.023.10.1016/j.jallcom.2017.02.023Search in Google Scholar

2. Tyvanchuk, Y. B., Lukachuk, M., Pöttgen, R., Szytuła, A., Kalychak, Y. M. Z. Naturforsch. 2015, 70b, 665–670. http://dx.doi.org/10.1515/znb-2015-0075.10.1515/znb-2015-0075Search in Google Scholar

3. Szytuła, A., Baran, S., Przewoźnik, J., Tyvanchuk, Y., Kalychak, Y. J. Magn. Magn. Mater. 2015, 387, 83–89. https://doi.org/10.1016/j.jmmm.2015.03.084.10.1016/j.jmmm.2015.03.084Search in Google Scholar

4. Kurleto, R., Starowicz, P., Goraus, J., Baran, S., Tyvanchuk, Y., Kalychak, Y.M., Szytuła, A. Solid State Commun 2015, 206, 46–50. http://dx.doi.org/10.1016/j.ssc.2015.01.014.10.1016/j.ssc.2015.01.014Search in Google Scholar

5. Kalychak, Ya. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner Jr, K. A., Pecharsky, V. K., Bünzli, J.-C. Eds.; Vol. 34, Elsevier: Amsterdam, 2005; p. 1. chapter 218. https://doi.org/10.1016/S0168-1273(04)34001-8.10.1016/S0168-1273(04)34001-8Search in Google Scholar

6. Villars, P., Cenzual, K., Gladyshevskii, R. Handbook of Inorganic Substances 2017; Walter de Gruyter: Berlin, 2017.10.1515/9783110445404Search in Google Scholar

7. Drašner, A., Blažina, Ž. J. Alloys Compd. 2006, 420, 213–217. http://dx.doi.org/10.1016/j.jallcom.2005.11.003.10.1016/j.jallcom.2005.11.003Search in Google Scholar

8. Drulis, H., Hackemer, A., Folcik, L., Giza, K., Bala, H., Gondek, Ł., Figiel, H. Int. J. Hydrogen Energy 2012, 37, 15850–15854. http://dx.doi.org/10.1016/j.ijhydene.2012.08.010.10.1016/j.ijhydene.2012.08.010Search in Google Scholar

9. Kalychak, Ya. M., Akselrud, L. G., Zaremba, V. I., Baranyak, V. M. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1984, 3, 39–42.Search in Google Scholar

10. Bigun, I., Dzevenko, M., Havela, L., Kalychak, Y. Eur. J. Inorg. Chem. 2014, 2631–2642. http://dx.doi.org/10.1002/ejic.201400058.10.1002/ejic.201400058Search in Google Scholar

11. Sheldrick, G. M. Acta Crystallogr 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

12. Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht (The Netherlands), 2000.Search in Google Scholar

13. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991.Search in Google Scholar

14. Nowotny, H. Z. Metallkd. 1942, 34, 247–253.10.1515/ijmr-1942-341004Search in Google Scholar

15. Joubert, J.-M., Černý, R., Latroche, M., Leroy, E., Guénée, L., Percheron-Guégan, A., Yvonw, K. J. Solid State Chem. 2002, 166, 1–6. https://doi.org/10.1006/jssc.2001.9499.10.1006/jssc.2001.9499Search in Google Scholar

16. Krypyakevich, P. I. Structure Types of the Intermetallic Compounds; Nauka: Мoscow, 1977.Search in Google Scholar

17. Sysa, L. V., Kalychak, Y. M., Galadzhun, Y. V., Zaremba, V. I., Akselrud, L. G., Skolozdra, R. V. J. Alloys Compd. 1998, 266, 17–21. https://doi.org/10.1016/S0925-8388(97)00500-8.10.1016/S0925-8388(97)00500-8Search in Google Scholar

18. Sysa, L. V., Kalychak, Ya. M. Neorg. Mater. 1994, 30, 779–782.Search in Google Scholar

Received: 2020-01-27
Accepted: 2020-03-15
Published Online: 2020-07-06
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Research articles
  4. Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
  5. Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
  6. Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
  7. Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
  8. Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
  9. The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
  10. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
  11. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
  12. Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
  13. High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
  14. High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
  15. Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
  16. Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
  17. New compounds of the Li2MSn3S8 type
  18. Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
  19. Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
  20. Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
  21. Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
  22. Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
  23. Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
  24. Notes
  25. La5Ir1.73In4.27 with Lu5Ni2In4-type structure
  26. The scandium-rich indide Sc50Pt13.47In2.53
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0020/html
Scroll to top button