Startseite Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules

  • Julia Silissa Horstmann , Alexander Hepp , Marcus Layh und Werner Uhl EMAIL logo
Veröffentlicht/Copyright: 6. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The previously reported active Lewis pair (ALP) iBu2Al–N(2-Ad)NC5H10 (1) (2-Ad = 2-adamantyl) is readily accessible by hydroalumination of the hydrazone H10C5N–N=(2-C10H14) with H–AliBu2. Treatment of 1 with two equivalents of isocyanates R-N=C=O yields six-membered AlC2N2O heterocycles 2 (2a, R = Ph; 2b, R = p-Tol) by dual insertion into the Al–N bonds. 2a reacts as a nucleophile with carboxylic acid chlorides R-C(O)–Cl [R = CH2tBu, p-Tol, H2CCH(Me)C6H4(4-CH2CHMe2) (Ibu-profen acid chloride), 0.5 (1,4-C6H4)] to afford by elimination of iBu2AlCl and hydrolysis new triuret derivatives R-C(O)[N(Ph)C(O)]2–N(2-Ad)NC5H10 (3a to 3d) as colourless, sparingly soluble solids in moderate (3c) to high (3b) yields. The analogous reaction of 2a with (p-Tol)–C(Cl)=N(p-Tol) leads to the imidoyl derivative (p-Tol)N=C(p-Tol)[N(Ph)C(O)]2–N(2-Ad)NC5H10 (4a), which showed a fast exchange of phenyl and tolyl groups to yield a mixture of isomers. The analogous reaction of 2b affords the corresponding compound 4b for which a single isomer is isolated despite the scrambling of substituents.


Corresponding author: Werner Uhl, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft, Germany

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (SFB 858) for generous financial support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Deutsche Forschungsgemeinschaft (SFB 858).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jupp, A. R., Stephan, D. W. Trends Chem. 2019, 1, 35–48, https://doi.org/10.1016/j.trechm.2019.01.006.10.1016/j.trechm.2019.01.006Suche in Google Scholar

2. Erker, G., Stephan, D. W., Eds. Frustrated Lewis Pairs, Vol. I and II, Topics in Current Chemistry; Springer, Heidelberg, 2013.10.1007/978-3-642-37759-4Suche in Google Scholar

3. Stephan, D. W., Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46–76; https://doi.org/10.1002/anie.200903708.10.1002/anie.200903708Suche in Google Scholar PubMed

4. Stephan, D. W., Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400–6441; https://doi.org/10.1002/anie.201409800.10.1002/anie.201409800Suche in Google Scholar PubMed

5. Lam, J., Szkop, K. M., Mosaferi, E., Stephan, D. W. Chem. Soc. Rev. 2019, 48, 3592–3612; https://doi.org/10.1039/c8cs00277k.10.1039/C8CS00277KSuche in Google Scholar

6. Holtrichter-Rößmann, T., Rösener, C., Hellmann, J., Uhl, W., Würthwein, E. -U., Fröhlich, R., Wibbeling, B. Organometallics 2012, 31, 3272–3283; https://doi.org/10.1021/om3001179.10.1021/om3001179Suche in Google Scholar

7. Layh, M., Uhl, W., Bouhadir, G., Bourissou, D. Organoaluminum Compounds and Lewis Pairs in Patai’s Chemistry of Functional Groups; Marek, J., Ed., John Wiley & Sons, Ltd, Chichester, 2016.10.1002/9780470682531.pat0839Suche in Google Scholar

8. Martinewski, K., Holtrichter-Rößmann, T., Rösener, C., Hepp, A., Würthwein, E. -U., Uhl, W. Chem. Eur. J. 2017, 23, 6129–6141; https://doi.org/10.1002/chem.201604630.10.1002/chem.201604630Suche in Google Scholar PubMed

9. Uhl, W., Hengesbach, F., Isermann, J., Soleimani, M., Schürmann, L., Hepp, A., Layh, M. Z. Anorg. Allg. Chem. 2019, 645, 1205–1214; https://doi.org/10.1002/zaac.201900195.10.1002/zaac.201900195Suche in Google Scholar

10. Uhl, W., Martinewski, K., Bruchhage, J. S., Hepp, A., Layh, M., Dielmann, F, Mehlmann, P. Z. Naturforsch. 2020, 75b, 63–71; https://doi.org/10.1515/znb-2019-0138.10.1515/znb-2019-0138Suche in Google Scholar

11. Hengesbach, F., Jin, X., Hepp, A., Wibbeling, B., Würthwein, E.-U., Uhl, W. Chem. Eur. J. 2013, 19, 13901–13909; https://doi.org/10.1002/chem.201302179.10.1002/chem.201302179Suche in Google Scholar PubMed

12. Uhl, W., Willeke, M., Hengesbach, F., Hepp, A., Layh, M. Organometallics 2016, 35, 3701–3712; https://doi.org/10.1021/acs.organomet.6b00658.10.1021/acs.organomet.6b00658Suche in Google Scholar

13. Uhl, W., Bruchhage, J. S., Willeke, M., Hepp, A., Kösters, J. Eur. J. Inorg. Chem. 2016, 2721–2730; https://doi.org/10.1002/ejic.201600170.10.1002/ejic.201600170Suche in Google Scholar

14. Hellmann, J., Rhotert, I., Westenberg, H., Fröhlich, R., Wibbeling, B., Uhl, W., Würthwein, E. -U. Eur. J. Org. Chem. 2013, 3356–3368, https://doi.org/10.1002/ejoc.201300208.10.1002/ejoc.201300208Suche in Google Scholar

15. Pérez, J., Carrascosa, R., García, L., Barandika, G., Calderón-Casado, A., Pérez, E., Serrano, J. L., Santana, M. D. Dalton Trans. 2011, 40, 9504–9511; https://doi.org/10.1039/c1dt11281c.10.1039/c1dt11281cSuche in Google Scholar PubMed

16. Conklin, D., Fortier, S., Glasgow, J. I., Allen, F. H. Acta Crystallogr. 1996, B52, 535–549; https://doi.org/10.1107/S010876819501696X.10.1107/S010876819501696XSuche in Google Scholar

17. Zhang, T. Therapeutisch relevante 14NO- und 15NO-Donoren mit Sydnonimin und S-Nitrosothiol-Struktur - Untersuchungen zur Synthese, Biotransformation und biologischen Aktivität; Dissertation, Universität Bonn, Bonn, 2002.Suche in Google Scholar

18. Ram, R. N., Kumar, N., Singh, N. J. Org. Chem. 2010, 75, 7408–7411; https://doi.org/10.1021/jo101045z.10.1021/jo101045zSuche in Google Scholar PubMed

19. Ulrich, H. Chemistry and Technology of Carbodiimides; John Wiley & Sons, New York, NY, 2007.10.1002/9780470516683Suche in Google Scholar

20. Darwent, B. D. B. Bond Dissociation Energies in Simple Molecules, NSRDS-NBS, Vol. 31, U. S. Government Printing Office, Washington, DC, 1970.10.6028/NBS.NSRDS.31Suche in Google Scholar

21. Huheey, J. E., Keiter, E. A., Keiter, R. L. Inorganic Chemistry, 4th ed., Harper Collins College Publishers, New York, 1993.Suche in Google Scholar

22. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press, Boca Raton, FL, 2007.10.1201/9781420007282Suche in Google Scholar

23. Batsanov, S. S., Batsanov, A. S. Introduction to Structural Chemistry; Springer, Dordrecht, Heidelberg, 2012.10.1007/978-94-007-4771-5Suche in Google Scholar

24. Ehm, C., Antinucci, G., Budzelaar, P. H. M., Busico, V. J. Organomet. Chem. 2014, 772–773, 161–171, http://dx.doi.org/10.1016/j.jorganchem.2014.09.013.10.1016/j.jorganchem.2014.09.013Suche in Google Scholar

25. Champagne, B., Mosley, D. H., Fripiat, J. G., André, J.-A., Bernard, A., Bettonville, S., François, P., Momtaz, A. J. Mol. Struct.-Theochem. 1998, 454, 149–159, https://doi.org/10.1016/S0166-1280(98)00285-1.10.1016/S0166-1280(98)00285-1Suche in Google Scholar

26. Vrieland, G. E., Stull, D. R. J. Chem. Eng. Data 1967, 12, 532–535; https://doi.org/10.1021/je60035a019.10.1021/je60035a019Suche in Google Scholar

27. Bernasconi, L., Madden, P. A., Wilson, M. PhysChemComm 2002, 5, 1–11; https://doi.org/10.1039/b107715e.10.1039/b107715eSuche in Google Scholar

28. Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48–76; https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar

29. Desiraju, G. Acc. Chem. Res. 1991, 24, 290–296; https://doi.org/10.1021/ar00010a002.10.1021/ar00010a002Suche in Google Scholar

30. Desiraju, G. Acc. Chem. Res. 1996, 29, 441–449; https://doi.org/10.1021/ar950135n.10.1021/ar950135nSuche in Google Scholar

31. Steiner, T. Crystallogr. Rev. 1996, 6, 1–57, https://doi.org/10.1080/08893119608035394.10.1080/08893119608035394Suche in Google Scholar

32. Carlström, D., Ringertz, H. Acta Crystallogr. 1965, 18, 307–313; https://doi.org/10.1107/s0365110x65000737.10.1107/S0365110X65000737Suche in Google Scholar

33. Ringertz, H. Acta Crystallogr. 1966, 20, 932–934; https://doi.org/10.1107/S0365110X66002196.10.1107/S0365110X66002196Suche in Google Scholar

34. Adarsh, N. N., Kumar, D. K., Dastidar, P. Cryst. Growth Des. 2009, 9, 2979–2989, https://doi.org/10.1021/cg8013859.10.1021/cg8013859Suche in Google Scholar

35. Frampton, C. S., Parkes, K. E. B. Acta Crystallogr. 1996, C52, 3246–3248, https://doi.org/10.1107/S0108270196011146.10.1107/S0108270196011146Suche in Google Scholar

36. Yamasaki, R., Iida, M., Ito, A., Fukuda, K., Tanatani, A., Kagechika, H., Masu, H., Okamoto, I. Cryst. Growth Des. 2017, 17, 5858–5866; https://doi.org/10.1021/acs.cgd.7b00951.10.1021/acs.cgd.7b00951Suche in Google Scholar

37. Betz, R., Gerber, T., Schalekamp, H. Acta Crystallogr. 2011, E67, o827, https://doi.org/10.1107/S1600536811008294.10.1107/S1600536811008294Suche in Google Scholar PubMed PubMed Central

38. Szyszkowska, A., Klasek, A., Pawlędzio, S., Trzybiński, D., Woźniak, K., Zarzyka, I. J. Mol. Struct. 2018, 1153, 230–238, https://doi.org/10.1016/j.molstruc.2017.10.014.10.1016/j.molstruc.2017.10.014Suche in Google Scholar

39. Hęclik, K., Trzybiński, D., Woźniak, K., Klasek, A. J. Mol. Model 2017, 23, 107; https://doi.org/10.1007/s00894-017-3284-1.10.1007/s00894-017-3284-1Suche in Google Scholar PubMed PubMed Central

40. Modric, N., Poje, M., Vickovic, I. Z. Kristallogr. 1996, 211, 209–210, https://doi.org/10.1524/zkri.1996.211.3.209.10.1524/zkri.1996.211.3.209Suche in Google Scholar

41. Zhao, F., Li, P., Liu, X., Jia, X., Wang, J., Liu, H. Molecules 2019, 24, 164; https://doi.org/10.3390/molecules24010164.10.3390/molecules24010164Suche in Google Scholar PubMed PubMed Central

42. Volonterio, A., Zanda, M. Lett. Org. Chem. 2005, 2, 44–46; https://doi.org/10.2174/1570178053400298.10.2174/1570178053400298Suche in Google Scholar

43. Mørkved, E. H. Acta Chem. Scand. B 1979, 33, 544–546, https://doi.org/10.3891/acta.chem.scand.33b-0544.10.3891/acta.chem.scand.33b-0544Suche in Google Scholar

44. Galli, R., Palla, O., Gozzo, F. J. Chem. Soc. Perkin Trans. I 1982, 2813–2817, https://doi.org/10.1039/P19820002813.10.1039/P19820002813Suche in Google Scholar

45. George, L., Netsch, K. -P., Penn, G., Kollenz, G., Wentrup, C. Org. Biomol. Chem. 2006, 4, 558–564; https://doi.org/10.1039/b515917b.10.1039/b515917bSuche in Google Scholar

46. Curtin, D. Y., Miller, L. L. J. Am. Chem. Soc. 1967, 89, 637–645; https://doi.org/10.1021/ja00979a030.10.1021/ja00979a030Suche in Google Scholar

47. Chen, S., Wei, W. -X., Wang, J., Xia, Y., Shen, Y, Wu, X. -X., Jing, H., Liang, Y. -M. Adv. Synth. Catal. 2017, 359, 3538–3544; https://doi.org/10.1002/adsc.201700765.10.1002/adsc.201700765Suche in Google Scholar

48. Vargas Mendez, L. Y., Kouznetsov, V. V. Cent. Eur. J. Chem. 2011, 9, 877–885, https://doi.org/10.2478/s11532-011-0082-y.10.2478/s11532-011-0082-ySuche in Google Scholar

49. Krajete, A., Steiner, G., Kopacka, H., Ongania, K. -H., Wurst, K., Kristen, M. O., Preishuber-Pflügl, P., Bildstein, B. Eur. J. Inorg. Chem. 2004, 1740–1752; https://doi.org/10.1002/ejic.200300405.10.1002/ejic.200300405Suche in Google Scholar

50. Dudkin, S., Iaroshenko, V. O., Sosnovskikh, V. Y., Tolmachev, A. A., Villinger, A., Langer, P. Org. Biomol. Chem. 2013, 11, 5351–5361; https://doi.org/10.1039/c3ob26837c.10.1039/c3ob26837cSuche in Google Scholar

51. Kokel, B., Royer, R., Declercq, J. P., Germain, G., van Meerssche, M. Tetrahedron Lett. 1981, 22, 449–452; https://doi.org/10.1016/0040-4039(81)80122-0.10.1016/0040-4039(81)80122-0Suche in Google Scholar

52. Modrić, N., Palković, A., Perina, I., Poje, M. Croat. Chem. Acta 1994, 67, 347–360.Suche in Google Scholar

53. Zylber, J., Ouazzani-Chahdi, L., Chiaroni, A., Riche, C. Tetrahedron Lett. 1988, 29, 2055–2057; https://doi.org/10.1016/S0040-4039(00)87833-8.10.1016/S0040-4039(00)87833-8Suche in Google Scholar

54. Csöregh, I., Kierkegaard, P., Koziol, J., Müller, F. Acta Chem. Scand. 1987, 41, 383–390; https://doi.org/10.3891/acta.chem.scand.41b-0383.10.3891/acta.chem.scand.41b-0383Suche in Google Scholar

55. Ménová, P., Eigner, V., Čejka, J., Dvořáková, H., Šanda, M, Cibulka, R. J. Mol. Struct. 2011, 1004, 178–187; https://doi.org/10.1016/j.molstruc.2011.08.002.10.1016/j.molstruc.2011.08.002Suche in Google Scholar

56. Zylber, J., Zylber, N., Chiaroni, A., Riche, C. Tetrahedron Lett. 1984, 25, 3853–3856; https://doi.org/10.1016/S0040-4039(01)91186-4.10.1016/S0040-4039(01)91186-4Suche in Google Scholar

57. Ménová, P., Eigner, V., Cibulka, R., Čejka, J, Dvořáková, H. Acta Crystallogr. 2009, E65, o1536–o1537; https://doi.org/10.1107/S1600536809020856.10.1107/S1600536809020856Suche in Google Scholar PubMed PubMed Central

58. Palii, S. P., Contreras, C. S., Steill, J. D., Palii, S. S., Oomens, J., Eyler, J. R. Arch. Biochem. Biophys. 2010, 498, 23–34; https://doi.org/10.1016/j.abb.2010.03.023.10.1016/j.abb.2010.03.023Suche in Google Scholar PubMed PubMed Central

59. Chen, J., Zhao, P., Liu, Y., Liu, H., Zhu, F. Korean J. Chem. Eng. 2012, 29, 288–290; https://doi.org/10.1007/s11814-011-0172-8.10.1007/s11814-011-0172-8Suche in Google Scholar

60. South, A. J., Geer, A. M., Taylor, L. J., Sharpe, H. R., Lewis, W., Blake, A. J., Kays, D. L. Organometallics 2019, 38, 4115–4120; https://doi.org/10.1021/acs.organomet.9b00393.10.1021/acs.organomet.9b00393Suche in Google Scholar

61. Saint+ (version 6.02), includes Xprep and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 1999.Suche in Google Scholar

62. Sheldrick, G. M. Sadabs; University of Göttingen: Göttingen, Germany, 1996.Suche in Google Scholar

63. Shelxtl-Plus (rel. 4.1); Siemens Analytical X-Ray Instruments Inc.: Madison, Wisconsin, USA, 1990.Suche in Google Scholar

64. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Structures; University of Göttingen: Göttingen, Germany, 1997.Suche in Google Scholar

65. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/S0108767307043930.10.1107/S0108767307043930Suche in Google Scholar PubMed


Supplementary material

The online version of this article offers supplementary material https://doi.org/10.1515/znb-2020-0049.


Received: 2020-04-16
Accepted: 2020-04-28
Published Online: 2020-07-06
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Research articles
  4. Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
  5. Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
  6. Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
  7. Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
  8. Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
  9. The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
  10. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
  11. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
  12. Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
  13. High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
  14. High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
  15. Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
  16. Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
  17. New compounds of the Li2MSn3S8 type
  18. Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
  19. Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
  20. Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
  21. Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
  22. Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
  23. Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
  24. Notes
  25. La5Ir1.73In4.27 with Lu5Ni2In4-type structure
  26. The scandium-rich indide Sc50Pt13.47In2.53
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0049/html
Button zum nach oben scrollen