Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
Abstract
The previously reported active Lewis pair (ALP) iBu2Al–N(2-Ad)NC5H10 (1) (2-Ad = 2-adamantyl) is readily accessible by hydroalumination of the hydrazone H10C5N–N=(2-C10H14) with H–AliBu2. Treatment of 1 with two equivalents of isocyanates R-N=C=O yields six-membered AlC2N2O heterocycles 2 (2a, R = Ph; 2b, R = p-Tol) by dual insertion into the Al–N bonds. 2a reacts as a nucleophile with carboxylic acid chlorides R-C(O)–Cl [R = CH2tBu, p-Tol, H2CCH(Me)C6H4(4-CH2CHMe2) (Ibu-profen acid chloride), 0.5 (1,4-C6H4)] to afford by elimination of iBu2AlCl and hydrolysis new triuret derivatives R-C(O)[N(Ph)C(O)]2–N(2-Ad)NC5H10 (3a to 3d) as colourless, sparingly soluble solids in moderate (3c) to high (3b) yields. The analogous reaction of 2a with (p-Tol)–C(Cl)=N(p-Tol) leads to the imidoyl derivative (p-Tol)N=C(p-Tol)[N(Ph)C(O)]2–N(2-Ad)NC5H10 (4a), which showed a fast exchange of phenyl and tolyl groups to yield a mixture of isomers. The analogous reaction of 2b affords the corresponding compound 4b for which a single isomer is isolated despite the scrambling of substituents.
Funding source: Deutsche Forschungsgemeinschaft, Germany
Acknowledgements
We are grateful to the Deutsche Forschungsgemeinschaft (SFB 858) for generous financial support.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This research was funded by the Deutsche Forschungsgemeinschaft (SFB 858).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Jupp, A. R., Stephan, D. W. Trends Chem. 2019, 1, 35–48, https://doi.org/10.1016/j.trechm.2019.01.006.10.1016/j.trechm.2019.01.006Suche in Google Scholar
2. Erker, G., Stephan, D. W., Eds. Frustrated Lewis Pairs, Vol. I and II, Topics in Current Chemistry; Springer, Heidelberg, 2013.10.1007/978-3-642-37759-4Suche in Google Scholar
3. Stephan, D. W., Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46–76; https://doi.org/10.1002/anie.200903708.10.1002/anie.200903708Suche in Google Scholar PubMed
4. Stephan, D. W., Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400–6441; https://doi.org/10.1002/anie.201409800.10.1002/anie.201409800Suche in Google Scholar PubMed
5. Lam, J., Szkop, K. M., Mosaferi, E., Stephan, D. W. Chem. Soc. Rev. 2019, 48, 3592–3612; https://doi.org/10.1039/c8cs00277k.10.1039/C8CS00277KSuche in Google Scholar
6. Holtrichter-Rößmann, T., Rösener, C., Hellmann, J., Uhl, W., Würthwein, E. -U., Fröhlich, R., Wibbeling, B. Organometallics 2012, 31, 3272–3283; https://doi.org/10.1021/om3001179.10.1021/om3001179Suche in Google Scholar
7. Layh, M., Uhl, W., Bouhadir, G., Bourissou, D. Organoaluminum Compounds and Lewis Pairs in Patai’s Chemistry of Functional Groups; Marek, J., Ed., John Wiley & Sons, Ltd, Chichester, 2016.10.1002/9780470682531.pat0839Suche in Google Scholar
8. Martinewski, K., Holtrichter-Rößmann, T., Rösener, C., Hepp, A., Würthwein, E. -U., Uhl, W. Chem. Eur. J. 2017, 23, 6129–6141; https://doi.org/10.1002/chem.201604630.10.1002/chem.201604630Suche in Google Scholar PubMed
9. Uhl, W., Hengesbach, F., Isermann, J., Soleimani, M., Schürmann, L., Hepp, A., Layh, M. Z. Anorg. Allg. Chem. 2019, 645, 1205–1214; https://doi.org/10.1002/zaac.201900195.10.1002/zaac.201900195Suche in Google Scholar
10. Uhl, W., Martinewski, K., Bruchhage, J. S., Hepp, A., Layh, M., Dielmann, F, Mehlmann, P. Z. Naturforsch. 2020, 75b, 63–71; https://doi.org/10.1515/znb-2019-0138.10.1515/znb-2019-0138Suche in Google Scholar
11. Hengesbach, F., Jin, X., Hepp, A., Wibbeling, B., Würthwein, E.-U., Uhl, W. Chem. Eur. J. 2013, 19, 13901–13909; https://doi.org/10.1002/chem.201302179.10.1002/chem.201302179Suche in Google Scholar PubMed
12. Uhl, W., Willeke, M., Hengesbach, F., Hepp, A., Layh, M. Organometallics 2016, 35, 3701–3712; https://doi.org/10.1021/acs.organomet.6b00658.10.1021/acs.organomet.6b00658Suche in Google Scholar
13. Uhl, W., Bruchhage, J. S., Willeke, M., Hepp, A., Kösters, J. Eur. J. Inorg. Chem. 2016, 2721–2730; https://doi.org/10.1002/ejic.201600170.10.1002/ejic.201600170Suche in Google Scholar
14. Hellmann, J., Rhotert, I., Westenberg, H., Fröhlich, R., Wibbeling, B., Uhl, W., Würthwein, E. -U. Eur. J. Org. Chem. 2013, 3356–3368, https://doi.org/10.1002/ejoc.201300208.10.1002/ejoc.201300208Suche in Google Scholar
15. Pérez, J., Carrascosa, R., García, L., Barandika, G., Calderón-Casado, A., Pérez, E., Serrano, J. L., Santana, M. D. Dalton Trans. 2011, 40, 9504–9511; https://doi.org/10.1039/c1dt11281c.10.1039/c1dt11281cSuche in Google Scholar PubMed
16. Conklin, D., Fortier, S., Glasgow, J. I., Allen, F. H. Acta Crystallogr. 1996, B52, 535–549; https://doi.org/10.1107/S010876819501696X.10.1107/S010876819501696XSuche in Google Scholar
17. Zhang, T. Therapeutisch relevante 14NO- und 15NO-Donoren mit Sydnonimin und S-Nitrosothiol-Struktur - Untersuchungen zur Synthese, Biotransformation und biologischen Aktivität; Dissertation, Universität Bonn, Bonn, 2002.Suche in Google Scholar
18. Ram, R. N., Kumar, N., Singh, N. J. Org. Chem. 2010, 75, 7408–7411; https://doi.org/10.1021/jo101045z.10.1021/jo101045zSuche in Google Scholar PubMed
19. Ulrich, H. Chemistry and Technology of Carbodiimides; John Wiley & Sons, New York, NY, 2007.10.1002/9780470516683Suche in Google Scholar
20. Darwent, B. D. B. Bond Dissociation Energies in Simple Molecules, NSRDS-NBS, Vol. 31, U. S. Government Printing Office, Washington, DC, 1970.10.6028/NBS.NSRDS.31Suche in Google Scholar
21. Huheey, J. E., Keiter, E. A., Keiter, R. L. Inorganic Chemistry, 4th ed., Harper Collins College Publishers, New York, 1993.Suche in Google Scholar
22. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press, Boca Raton, FL, 2007.10.1201/9781420007282Suche in Google Scholar
23. Batsanov, S. S., Batsanov, A. S. Introduction to Structural Chemistry; Springer, Dordrecht, Heidelberg, 2012.10.1007/978-94-007-4771-5Suche in Google Scholar
24. Ehm, C., Antinucci, G., Budzelaar, P. H. M., Busico, V. J. Organomet. Chem. 2014, 772–773, 161–171, http://dx.doi.org/10.1016/j.jorganchem.2014.09.013.10.1016/j.jorganchem.2014.09.013Suche in Google Scholar
25. Champagne, B., Mosley, D. H., Fripiat, J. G., André, J.-A., Bernard, A., Bettonville, S., François, P., Momtaz, A. J. Mol. Struct.-Theochem. 1998, 454, 149–159, https://doi.org/10.1016/S0166-1280(98)00285-1.10.1016/S0166-1280(98)00285-1Suche in Google Scholar
26. Vrieland, G. E., Stull, D. R. J. Chem. Eng. Data 1967, 12, 532–535; https://doi.org/10.1021/je60035a019.10.1021/je60035a019Suche in Google Scholar
27. Bernasconi, L., Madden, P. A., Wilson, M. PhysChemComm 2002, 5, 1–11; https://doi.org/10.1039/b107715e.10.1039/b107715eSuche in Google Scholar
28. Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48–76; https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar
29. Desiraju, G. Acc. Chem. Res. 1991, 24, 290–296; https://doi.org/10.1021/ar00010a002.10.1021/ar00010a002Suche in Google Scholar
30. Desiraju, G. Acc. Chem. Res. 1996, 29, 441–449; https://doi.org/10.1021/ar950135n.10.1021/ar950135nSuche in Google Scholar
31. Steiner, T. Crystallogr. Rev. 1996, 6, 1–57, https://doi.org/10.1080/08893119608035394.10.1080/08893119608035394Suche in Google Scholar
32. Carlström, D., Ringertz, H. Acta Crystallogr. 1965, 18, 307–313; https://doi.org/10.1107/s0365110x65000737.10.1107/S0365110X65000737Suche in Google Scholar
33. Ringertz, H. Acta Crystallogr. 1966, 20, 932–934; https://doi.org/10.1107/S0365110X66002196.10.1107/S0365110X66002196Suche in Google Scholar
34. Adarsh, N. N., Kumar, D. K., Dastidar, P. Cryst. Growth Des. 2009, 9, 2979–2989, https://doi.org/10.1021/cg8013859.10.1021/cg8013859Suche in Google Scholar
35. Frampton, C. S., Parkes, K. E. B. Acta Crystallogr. 1996, C52, 3246–3248, https://doi.org/10.1107/S0108270196011146.10.1107/S0108270196011146Suche in Google Scholar
36. Yamasaki, R., Iida, M., Ito, A., Fukuda, K., Tanatani, A., Kagechika, H., Masu, H., Okamoto, I. Cryst. Growth Des. 2017, 17, 5858–5866; https://doi.org/10.1021/acs.cgd.7b00951.10.1021/acs.cgd.7b00951Suche in Google Scholar
37. Betz, R., Gerber, T., Schalekamp, H. Acta Crystallogr. 2011, E67, o827, https://doi.org/10.1107/S1600536811008294.10.1107/S1600536811008294Suche in Google Scholar PubMed PubMed Central
38. Szyszkowska, A., Klasek, A., Pawlędzio, S., Trzybiński, D., Woźniak, K., Zarzyka, I. J. Mol. Struct. 2018, 1153, 230–238, https://doi.org/10.1016/j.molstruc.2017.10.014.10.1016/j.molstruc.2017.10.014Suche in Google Scholar
39. Hęclik, K., Trzybiński, D., Woźniak, K., Klasek, A. J. Mol. Model 2017, 23, 107; https://doi.org/10.1007/s00894-017-3284-1.10.1007/s00894-017-3284-1Suche in Google Scholar PubMed PubMed Central
40. Modric, N., Poje, M., Vickovic, I. Z. Kristallogr. 1996, 211, 209–210, https://doi.org/10.1524/zkri.1996.211.3.209.10.1524/zkri.1996.211.3.209Suche in Google Scholar
41. Zhao, F., Li, P., Liu, X., Jia, X., Wang, J., Liu, H. Molecules 2019, 24, 164; https://doi.org/10.3390/molecules24010164.10.3390/molecules24010164Suche in Google Scholar PubMed PubMed Central
42. Volonterio, A., Zanda, M. Lett. Org. Chem. 2005, 2, 44–46; https://doi.org/10.2174/1570178053400298.10.2174/1570178053400298Suche in Google Scholar
43. Mørkved, E. H. Acta Chem. Scand. B 1979, 33, 544–546, https://doi.org/10.3891/acta.chem.scand.33b-0544.10.3891/acta.chem.scand.33b-0544Suche in Google Scholar
44. Galli, R., Palla, O., Gozzo, F. J. Chem. Soc. Perkin Trans. I 1982, 2813–2817, https://doi.org/10.1039/P19820002813.10.1039/P19820002813Suche in Google Scholar
45. George, L., Netsch, K. -P., Penn, G., Kollenz, G., Wentrup, C. Org. Biomol. Chem. 2006, 4, 558–564; https://doi.org/10.1039/b515917b.10.1039/b515917bSuche in Google Scholar
46. Curtin, D. Y., Miller, L. L. J. Am. Chem. Soc. 1967, 89, 637–645; https://doi.org/10.1021/ja00979a030.10.1021/ja00979a030Suche in Google Scholar
47. Chen, S., Wei, W. -X., Wang, J., Xia, Y., Shen, Y, Wu, X. -X., Jing, H., Liang, Y. -M. Adv. Synth. Catal. 2017, 359, 3538–3544; https://doi.org/10.1002/adsc.201700765.10.1002/adsc.201700765Suche in Google Scholar
48. Vargas Mendez, L. Y., Kouznetsov, V. V. Cent. Eur. J. Chem. 2011, 9, 877–885, https://doi.org/10.2478/s11532-011-0082-y.10.2478/s11532-011-0082-ySuche in Google Scholar
49. Krajete, A., Steiner, G., Kopacka, H., Ongania, K. -H., Wurst, K., Kristen, M. O., Preishuber-Pflügl, P., Bildstein, B. Eur. J. Inorg. Chem. 2004, 1740–1752; https://doi.org/10.1002/ejic.200300405.10.1002/ejic.200300405Suche in Google Scholar
50. Dudkin, S., Iaroshenko, V. O., Sosnovskikh, V. Y., Tolmachev, A. A., Villinger, A., Langer, P. Org. Biomol. Chem. 2013, 11, 5351–5361; https://doi.org/10.1039/c3ob26837c.10.1039/c3ob26837cSuche in Google Scholar
51. Kokel, B., Royer, R., Declercq, J. P., Germain, G., van Meerssche, M. Tetrahedron Lett. 1981, 22, 449–452; https://doi.org/10.1016/0040-4039(81)80122-0.10.1016/0040-4039(81)80122-0Suche in Google Scholar
52. Modrić, N., Palković, A., Perina, I., Poje, M. Croat. Chem. Acta 1994, 67, 347–360.Suche in Google Scholar
53. Zylber, J., Ouazzani-Chahdi, L., Chiaroni, A., Riche, C. Tetrahedron Lett. 1988, 29, 2055–2057; https://doi.org/10.1016/S0040-4039(00)87833-8.10.1016/S0040-4039(00)87833-8Suche in Google Scholar
54. Csöregh, I., Kierkegaard, P., Koziol, J., Müller, F. Acta Chem. Scand. 1987, 41, 383–390; https://doi.org/10.3891/acta.chem.scand.41b-0383.10.3891/acta.chem.scand.41b-0383Suche in Google Scholar
55. Ménová, P., Eigner, V., Čejka, J., Dvořáková, H., Šanda, M, Cibulka, R. J. Mol. Struct. 2011, 1004, 178–187; https://doi.org/10.1016/j.molstruc.2011.08.002.10.1016/j.molstruc.2011.08.002Suche in Google Scholar
56. Zylber, J., Zylber, N., Chiaroni, A., Riche, C. Tetrahedron Lett. 1984, 25, 3853–3856; https://doi.org/10.1016/S0040-4039(01)91186-4.10.1016/S0040-4039(01)91186-4Suche in Google Scholar
57. Ménová, P., Eigner, V., Cibulka, R., Čejka, J, Dvořáková, H. Acta Crystallogr. 2009, E65, o1536–o1537; https://doi.org/10.1107/S1600536809020856.10.1107/S1600536809020856Suche in Google Scholar PubMed PubMed Central
58. Palii, S. P., Contreras, C. S., Steill, J. D., Palii, S. S., Oomens, J., Eyler, J. R. Arch. Biochem. Biophys. 2010, 498, 23–34; https://doi.org/10.1016/j.abb.2010.03.023.10.1016/j.abb.2010.03.023Suche in Google Scholar PubMed PubMed Central
59. Chen, J., Zhao, P., Liu, Y., Liu, H., Zhu, F. Korean J. Chem. Eng. 2012, 29, 288–290; https://doi.org/10.1007/s11814-011-0172-8.10.1007/s11814-011-0172-8Suche in Google Scholar
60. South, A. J., Geer, A. M., Taylor, L. J., Sharpe, H. R., Lewis, W., Blake, A. J., Kays, D. L. Organometallics 2019, 38, 4115–4120; https://doi.org/10.1021/acs.organomet.9b00393.10.1021/acs.organomet.9b00393Suche in Google Scholar
61. Saint+ (version 6.02), includes Xprep and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 1999.Suche in Google Scholar
62. Sheldrick, G. M. Sadabs; University of Göttingen: Göttingen, Germany, 1996.Suche in Google Scholar
63. Shelxtl-Plus (rel. 4.1); Siemens Analytical X-Ray Instruments Inc.: Madison, Wisconsin, USA, 1990.Suche in Google Scholar
64. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Structures; University of Göttingen: Göttingen, Germany, 1997.Suche in Google Scholar
65. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/S0108767307043930.10.1107/S0108767307043930Suche in Google Scholar PubMed
Supplementary material
The online version of this article offers supplementary material https://doi.org/10.1515/znb-2020-0049.
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53