The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
Abstract
Two new mononuclear compounds [Mn(3-Br-pydc)(H2O)3] (1) and {[Mn(5-Br-pyc)(bipy)(H2O)(Cl)]·2H2O (2) (3-Br-H2pydc = 3-Br-pyridine-2,6-dicarboxylic acid, 5-Br-Hpyc = 5-Br-pyridine-2-carboxylic acid, bipy = 2,2′-bipyridine) have been synthesized by traditional solution reaction and hydrothermal reaction, respectively. In both compounds, the MnII center is six-coordinated in a distorted octahedral geometry, formed by one tridentate chelate 3-Br-pydc dianion and three water molecules in 1, while the coordination sphere consists of one bidentate chelate 5-Br-pyc anion, one bipy, one water molecule, and one chloride anion in 2 (MnNO5 for 1 and MnN3O2Cl for 2). O–H⋯O hydrogen bonds, Br⋯O halogen bonds, and/or π-π stacking assist in the construction of the three-dimensional (3D) network structures of 1 and 2. Notably, the 5-Br-Hpyc ligand was generated in situ by decarboxylation of the 3-Br-H2pydc precursor under hydrothermal conditions. Variable-temperature magnetic susceptibility data in the 2–300 K temperature range indicate weak antiferromagnetic coupling in both 1 and 2.
Funding source: Key scientific research projects in Colleges and Universities of Henan province
Award Identifier / Grant number: 17A150040
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by the Key scientific research projects in Colleges and Universities of Henan province (No. 17A150040).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Li, P., Wang, B. Isr. J. Chem. 2018, 58, 1010.10.1002/ijch.201800078Search in Google Scholar
2. Yang, Q., Xu, Q., Jiang, H.-L. Chem. Soc. Rev. 2017, 46, 4774.10.1039/C6CS00724DSearch in Google Scholar PubMed
3. Zhou, J., Wang, B. Chem. Soc. Rev. 2017, 46, 6927.10.1039/C7CS00283ASearch in Google Scholar PubMed
4. Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353.10.1039/b804757jSearch in Google Scholar PubMed
5. Li, J.-X., Du, Z.-X., Wang, J., Feng, X. Z. Naturforsch. 2019, 74b, 839.10.1515/znb-2019-0147Search in Google Scholar
6. Du, Z.-X., Li, J.-X. Inorg. Chim. Acta 2015, 436, 159.10.1016/j.ica.2015.07.036Search in Google Scholar
7. Li, J.-X., Du, Z.-X. Chin. J. Struct. Chem. 2012, 31, 877.10.7312/li--16274-032Search in Google Scholar
8. Li, J.-X., Du, Z.-X., Wang, J.-G., Wang, T., Lv, J.-N. Inorg. Chem. Commun. 2012, 15, 243.10.1016/j.inoche.2011.10.036Search in Google Scholar
9. Li, R.-F., Gu, Y.-X., Liu, X.-F., Feng, X., Ma, L.-F. Z. Anorg. Allg. Chem. 2015, 641, 1114.10.1002/zaac.201400483Search in Google Scholar
10. X. Feng, L. Liu, L.-Y . Wang, H.-L. Song, Z.-Q. Shi, X.-H. Wu, S.-W. Ng. J. Solid State Chem. 2013, 206, 277.https://doi.org/10.1016/j.jssc.2013.08.029.Search in Google Scholar
11. Li, J.-X., Du, Z.-X., Zhu, B.-L., An, H.-Q., Dong, J.-X., Hu, X.-J., Huang, W.-P. Inorg. Chem. Commun. 2011, 14, 522.10.1016/j.inoche.2011.01.012Search in Google Scholar
12. Li, J.-X., Du, Z.-X., Huang, W.-P. Z. Naturforsch. 2011, 66b, 1029.10.1515/znb-2011-1007Search in Google Scholar
13. Yi, F. Y., Chen, D., Wu, M. K., Han, L., Jiang, H. L. ChemPlusChem 2016, 81, 675. https://doi.org/10.1002/cplu.201600137.Search in Google Scholar PubMed
14. Xiao, Q.-Q., Dong, G.-Y., Li, Y.-H., Cui, G.-H. Inorg. Chem. 2019, 58, 15696. https://doi.org/10.1021/acs.inorgchem.9b02534.Search in Google Scholar PubMed
15. Feng, X., Li, R.-L., Wang, L.-Y., Ng, S.-W., Qin, G. Z., Ma, L.-F. CrystEngComm 2015, 17, 7878. https://doi.org/10.1039/c5ce01454a.Search in Google Scholar
16. Zhang, T., Xue, L. P. Chin. J. Struct. Chem. 2015, 34, 417.Search in Google Scholar
17. Li, J.-X., Du, Z.-X. J. Coord. Chem. 2016, 69, 2563. https://doi.org/10.1080/00958972.2016.1216106.Search in Google Scholar
18. Du, Z.-X., Li, J.-X., Bai, R. F. Z. Kristallogr. NCS 2020, 235, 55. https://doi.org/10.1515/ncrs-2019-0470.Search in Google Scholar
19. Li, J.-X., Du, Z.-X. Z. Kristallogr. NCS 2020, 235. https://doi.org/10.1515/NCRS-2020-0083.Search in Google Scholar
20. Chang, X.-H., Qin, J.-H., Han, M.-L., Ma, L.-F., Wang, L.-Y. CrystEngComm 2014, 16, 870. https://doi.org/10.1039/c3ce41641k.Search in Google Scholar
21. Kang, H.-X., Fu, Y.-Q., Ju, F.-Y., Wang, Y.-F., Li, X.-L., Liu, G.-Z., Chin. J. Struct. Chem. 2019, 38, 1266. https://doi.org/10.14102/j.cnki.0254-5861.2011-2203.Search in Google Scholar
22. Li, J.-X., Du, Z.-X., Wang, L.-Z., Huang, W.-P. Inorg. Chim. Acta 2011, 376, 479. https://doi.org/10.1016/j.ica.2011.07.013.Search in Google Scholar
23. Li, J.-X., Guo, W.-B., Du, Z.-X., Huang, W.-P. Inorg. Chim. Acta 2011, 375, 290. https://doi.org/10.1016/j.ica.2011.05.018.Search in Google Scholar
24. Du, Z.-X., Li, J.-X. Z. Naturforsch. 2020, 75b. https://doi.org/10.1515/znb-2020-0042.Search in Google Scholar
25. Li, J.-X., Du, Z.-X. J. Clust. Sci. 2020, 31, 507. https://doi.org/10.1007/s10876-019-01666-w.Search in Google Scholar
26. Li, J.-X., Du, Z.-X., Feng, X. Z. Naturforsch. 2019, 74b, 833. https://doi.org/10.1515/znb-2019-0128.Search in Google Scholar
27. Zhang, J., Li, J.-X. Z. Naturforsch. 2016, 71b, 45. https://doi.org/10.1515/znb-2015-0135.Search in Google Scholar
28. Li, J.-X., Du, Z.-X., Pan, Q.-Y., Zhang, L.-L., Liu, D. L. Inorg. Chim. Acta 2020, 509, 119677. https://doi.org/10.1016/j.ica.2020.119677.Search in Google Scholar
29. Li, X.-L., Xin, L.-Y., Feng, X. Z. Kristallogr. NCS 2014, 227, 461. https://doi.org/10.1524/ncrs.2012.0209.Search in Google Scholar
30. Li, R.-F., Liu, X.-F., Zhang, T., Zhang, X.-Y., Feng, X., J. Mol. Struct. 2014, 1075, 456. https://doi.org/10.1016/j.molstruc.2014.06.075.Search in Google Scholar
31. Gu, J.-Z., Liang, X.-X., Cai, Y., Wu, J., Shi, Z.-F., Kirillov, A. M. Dalton Trans. 2017, 46, 10908. https://doi.org/10.1039/C7DT01742A.Search in Google Scholar
32. Liu, C.-B., Li, Q., Wang, X., Che, G.-B., Zhang, X.-J. Inorg. Chem. Commun. 2014, 39, 56. https://doi.org/10.1016/j.inoche.2013.10.050.Search in Google Scholar
33. Yang, A.-H., Zou, J.-Y., Wang, W.-M., Shi, X.-Y., Gao, H.-L., Cui, J.-Z., Zhao, B. Inorg. Chem. 2014, 53, 7092. https://doi.org/10.1021/ic402803s.Search in Google Scholar PubMed
34. Zhang, X.-M. Coord. Chem. Rev. 2005, 249, 1201. https://doi.org/10.1016/j.ccr.2005.01.004.Search in Google Scholar
35. CrysAlis Pro. Rigaku Oxford Diffraction: Yarnton, Oxfordshire (UK), 2016.Search in Google Scholar
36. Dolomanov, O.-V., Bourhis, L.-J., Gildea, R.-J., Howard, J.-A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339. https://doi.org/10.1107/S0021889808042726.Search in Google Scholar
37. Sheldrick, G.-M. Acta Crystallogr. 2015, A71, 3. https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central
38. Sheldrick, G.-M. Acta Crystallogr. 2015, C71, 3. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central
39. Najafpour, M.-M., McKee, V. Catal. Commun. 2010, 11, 1032. https://doi.org/10.1016/j.catcom.2010.04.016.Search in Google Scholar
40. Wolf, M., Klüfers, P. Eur. J. Inorg. Chem. 2017, 2303. https://doi.org/10.1002/ejic.201601329.Search in Google Scholar
41. Li, J.-X., Du, Z.-X. Z. Naturforsch. 2015, 70b, 505. https://doi.org/10.1515/znb-2015-0010.Search in Google Scholar
42. Mao, L., Wang, Y., Qi, Y., Cao, M., Hu, C. J. Mol. Struct. 2004, 688, 197. https://doi.org/10.1016/j.molstruc.2003.10.015.Search in Google Scholar
43. Uhrecký, R., Moncoľ, J., Koman, M., Titiš, J., Boča, R. Dalton Trans. 2013, 42, 9490. https://doi.org/10.1039/c3dt50940k.Search in Google Scholar
44. Tabatabaee, M., Mahmoodikhah, H., Ahadiat, G., Dušek, M., Pojarová, M. Monatsh. Chem. 2013, 144, 621. https://doi.org/10.1007/s00706-012-0878-2.Search in Google Scholar
45. Cui, S., Zhao, Y., Zhang, J. Acta Cryst. 2007, E63, m3102. https://doi.org/10.1107/S1600536807045898.Search in Google Scholar
46. Aya, B., Şahin, O., Yildiz, E. Solid State Sci. 2019, 96, 105958. https://doi.org/10.1016/j.solidstatesciences.2019.105958.Search in Google Scholar
47. Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L., Sun, L. Eur. J. Inorg. Chem. 2004, 1454. https://doi.org/10.1002/ejic.200300586.Search in Google Scholar
48. Devereux, M., McCann, M., Leon, V., McKee, V., Ball, R.-J. Polyhedron 2002, 21, 1063. https://doi.org/10.1016/S0277-5387(02)00842-2.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53
Articles in the same Issue
- Frontmatter
- In this issue
- Research articles
- Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
- Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
- Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
- Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
- Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
- The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
- The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
- A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
- Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
- High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
- High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
- Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
- Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
- New compounds of the Li2MSn3S8 type
- Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
- Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
- Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
- Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
- Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
- Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
- Notes
- La5Ir1.73In4.27 with Lu5Ni2In4-type structure
- The scandium-rich indide Sc50Pt13.47In2.53