Home The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
Article
Licensed
Unlicensed Requires Authentication

The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation

  • Zhong-Xiang Du , Jun-Xia Li EMAIL logo , Shi-Jiang Liu , Zhi-Qiong Wang and Qing-Jie Pan
Published/Copyright: July 6, 2020
Become an author with De Gruyter Brill

Abstract

Two new mononuclear compounds [Mn(3-Br-pydc)(H2O)3] (1) and {[Mn(5-Br-pyc)(bipy)(H2O)(Cl)]·2H2O (2) (3-Br-H2pydc = 3-Br-pyridine-2,6-dicarboxylic acid, 5-Br-Hpyc = 5-Br-pyridine-2-carboxylic acid, bipy = 2,2′-bipyridine) have been synthesized by traditional solution reaction and hydrothermal reaction, respectively. In both compounds, the MnII center is six-coordinated in a distorted octahedral geometry, formed by one tridentate chelate 3-Br-pydc dianion and three water molecules in 1, while the coordination sphere consists of one bidentate chelate 5-Br-pyc anion, one bipy, one water molecule, and one chloride anion in 2 (MnNO5 for 1 and MnN3O2Cl for 2). O–H⋯O hydrogen bonds, Br⋯O halogen bonds, and/or π-π stacking assist in the construction of the three-dimensional (3D) network structures of 1 and 2. Notably, the 5-Br-Hpyc ligand was generated in situ by decarboxylation of the 3-Br-H2pydc precursor under hydrothermal conditions. Variable-temperature magnetic susceptibility data in the 2–300 K temperature range indicate weak antiferromagnetic coupling in both 1 and 2.


Corresponding author: Jun-Xia Li, Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province, 471934, PR China, E-mail:

Funding source: Key scientific research projects in Colleges and Universities of Henan province

Award Identifier / Grant number: 17A150040

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Key scientific research projects in Colleges and Universities of Henan province (No. 17A150040).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Li, P., Wang, B. Isr. J. Chem. 2018, 58, 1010.10.1002/ijch.201800078Search in Google Scholar

2. Yang, Q., Xu, Q., Jiang, H.-L. Chem. Soc. Rev. 2017, 46, 4774.10.1039/C6CS00724DSearch in Google Scholar PubMed

3. Zhou, J., Wang, B. Chem. Soc. Rev. 2017, 46, 6927.10.1039/C7CS00283ASearch in Google Scholar PubMed

4. Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353.10.1039/b804757jSearch in Google Scholar PubMed

5. Li, J.-X., Du, Z.-X., Wang, J., Feng, X. Z. Naturforsch. 2019, 74b, 839.10.1515/znb-2019-0147Search in Google Scholar

6. Du, Z.-X., Li, J.-X. Inorg. Chim. Acta 2015, 436, 159.10.1016/j.ica.2015.07.036Search in Google Scholar

7. Li, J.-X., Du, Z.-X. Chin. J. Struct. Chem. 2012, 31, 877.10.7312/li--16274-032Search in Google Scholar

8. Li, J.-X., Du, Z.-X., Wang, J.-G., Wang, T., Lv, J.-N. Inorg. Chem. Commun. 2012, 15, 243.10.1016/j.inoche.2011.10.036Search in Google Scholar

9. Li, R.-F., Gu, Y.-X., Liu, X.-F., Feng, X., Ma, L.-F. Z. Anorg. Allg. Chem. 2015, 641, 1114.10.1002/zaac.201400483Search in Google Scholar

10. X. Feng, L. Liu, L.-Y . Wang, H.-L. Song, Z.-Q. Shi, X.-H. Wu, S.-W. Ng. J. Solid State Chem. 2013, 206, 277.https://doi.org/10.1016/j.jssc.2013.08.029.Search in Google Scholar

11. Li, J.-X., Du, Z.-X., Zhu, B.-L., An, H.-Q., Dong, J.-X., Hu, X.-J., Huang, W.-P. Inorg. Chem. Commun. 2011, 14, 522.10.1016/j.inoche.2011.01.012Search in Google Scholar

12. Li, J.-X., Du, Z.-X., Huang, W.-P. Z. Naturforsch. 2011, 66b, 1029.10.1515/znb-2011-1007Search in Google Scholar

13. Yi, F. Y., Chen, D., Wu, M. K., Han, L., Jiang, H. L. ChemPlusChem 2016, 81, 675. https://doi.org/10.1002/cplu.201600137.Search in Google Scholar PubMed

14. Xiao, Q.-Q., Dong, G.-Y., Li, Y.-H., Cui, G.-H. Inorg. Chem. 2019, 58, 15696. https://doi.org/10.1021/acs.inorgchem.9b02534.Search in Google Scholar PubMed

15. Feng, X., Li, R.-L., Wang, L.-Y., Ng, S.-W., Qin, G. Z., Ma, L.-F. CrystEngComm 2015, 17, 7878. https://doi.org/10.1039/c5ce01454a.Search in Google Scholar

16. Zhang, T., Xue, L. P. Chin. J. Struct. Chem. 2015, 34, 417.Search in Google Scholar

17. Li, J.-X., Du, Z.-X. J. Coord. Chem. 2016, 69, 2563. https://doi.org/10.1080/00958972.2016.1216106.Search in Google Scholar

18. Du, Z.-X., Li, J.-X., Bai, R. F. Z. Kristallogr. NCS 2020, 235, 55. https://doi.org/10.1515/ncrs-2019-0470.Search in Google Scholar

19. Li, J.-X., Du, Z.-X. Z. Kristallogr. NCS 2020, 235. https://doi.org/10.1515/NCRS-2020-0083.Search in Google Scholar

20. Chang, X.-H., Qin, J.-H., Han, M.-L., Ma, L.-F., Wang, L.-Y. CrystEngComm 2014, 16, 870. https://doi.org/10.1039/c3ce41641k.Search in Google Scholar

21. Kang, H.-X., Fu, Y.-Q., Ju, F.-Y., Wang, Y.-F., Li, X.-L., Liu, G.-Z., Chin. J. Struct. Chem. 2019, 38, 1266. https://doi.org/10.14102/j.cnki.0254-5861.2011-2203.Search in Google Scholar

22. Li, J.-X., Du, Z.-X., Wang, L.-Z., Huang, W.-P. Inorg. Chim. Acta 2011, 376, 479. https://doi.org/10.1016/j.ica.2011.07.013.Search in Google Scholar

23. Li, J.-X., Guo, W.-B., Du, Z.-X., Huang, W.-P. Inorg. Chim. Acta 2011, 375, 290. https://doi.org/10.1016/j.ica.2011.05.018.Search in Google Scholar

24. Du, Z.-X., Li, J.-X. Z. Naturforsch. 2020, 75b. https://doi.org/10.1515/znb-2020-0042.Search in Google Scholar

25. Li, J.-X., Du, Z.-X. J. Clust. Sci. 2020, 31, 507. https://doi.org/10.1007/s10876-019-01666-w.Search in Google Scholar

26. Li, J.-X., Du, Z.-X., Feng, X. Z. Naturforsch. 2019, 74b, 833. https://doi.org/10.1515/znb-2019-0128.Search in Google Scholar

27. Zhang, J., Li, J.-X. Z. Naturforsch. 2016, 71b, 45. https://doi.org/10.1515/znb-2015-0135.Search in Google Scholar

28. Li, J.-X., Du, Z.-X., Pan, Q.-Y., Zhang, L.-L., Liu, D. L. Inorg. Chim. Acta 2020, 509, 119677. https://doi.org/10.1016/j.ica.2020.119677.Search in Google Scholar

29. Li, X.-L., Xin, L.-Y., Feng, X. Z. Kristallogr. NCS 2014, 227, 461. https://doi.org/10.1524/ncrs.2012.0209.Search in Google Scholar

30. Li, R.-F., Liu, X.-F., Zhang, T., Zhang, X.-Y., Feng, X., J. Mol. Struct. 2014, 1075, 456. https://doi.org/10.1016/j.molstruc.2014.06.075.Search in Google Scholar

31. Gu, J.-Z., Liang, X.-X., Cai, Y., Wu, J., Shi, Z.-F., Kirillov, A. M. Dalton Trans. 2017, 46, 10908. https://doi.org/10.1039/C7DT01742A.Search in Google Scholar

32. Liu, C.-B., Li, Q., Wang, X., Che, G.-B., Zhang, X.-J. Inorg. Chem. Commun. 2014, 39, 56. https://doi.org/10.1016/j.inoche.2013.10.050.Search in Google Scholar

33. Yang, A.-H., Zou, J.-Y., Wang, W.-M., Shi, X.-Y., Gao, H.-L., Cui, J.-Z., Zhao, B. Inorg. Chem. 2014, 53, 7092. https://doi.org/10.1021/ic402803s.Search in Google Scholar PubMed

34. Zhang, X.-M. Coord. Chem. Rev. 2005, 249, 1201. https://doi.org/10.1016/j.ccr.2005.01.004.Search in Google Scholar

35. CrysAlis Pro. Rigaku Oxford Diffraction: Yarnton, Oxfordshire (UK), 2016.Search in Google Scholar

36. Dolomanov, O.-V., Bourhis, L.-J., Gildea, R.-J., Howard, J.-A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339. https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

37. Sheldrick, G.-M. Acta Crystallogr. 2015, A71, 3. https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central

38. Sheldrick, G.-M. Acta Crystallogr. 2015, C71, 3. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

39. Najafpour, M.-M., McKee, V. Catal. Commun. 2010, 11, 1032. https://doi.org/10.1016/j.catcom.2010.04.016.Search in Google Scholar

40. Wolf, M., Klüfers, P. Eur. J. Inorg. Chem. 2017, 2303. https://doi.org/10.1002/ejic.201601329.Search in Google Scholar

41. Li, J.-X., Du, Z.-X. Z. Naturforsch. 2015, 70b, 505. https://doi.org/10.1515/znb-2015-0010.Search in Google Scholar

42. Mao, L., Wang, Y., Qi, Y., Cao, M., Hu, C. J. Mol. Struct. 2004, 688, 197. https://doi.org/10.1016/j.molstruc.2003.10.015.Search in Google Scholar

43. Uhrecký, R., Moncoľ, J., Koman, M., Titiš, J., Boča, R. Dalton Trans. 2013, 42, 9490. https://doi.org/10.1039/c3dt50940k.Search in Google Scholar

44. Tabatabaee, M., Mahmoodikhah, H., Ahadiat, G., Dušek, M., Pojarová, M. Monatsh. Chem. 2013, 144, 621. https://doi.org/10.1007/s00706-012-0878-2.Search in Google Scholar

45. Cui, S., Zhao, Y., Zhang, J. Acta Cryst. 2007, E63, m3102. https://doi.org/10.1107/S1600536807045898.Search in Google Scholar

46. Aya, B., Şahin, O., Yildiz, E. Solid State Sci. 2019, 96, 105958. https://doi.org/10.1016/j.solidstatesciences.2019.105958.Search in Google Scholar

47. Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L., Sun, L. Eur. J. Inorg. Chem. 2004, 1454. https://doi.org/10.1002/ejic.200300586.Search in Google Scholar

48. Devereux, M., McCann, M., Leon, V., McKee, V., Ball, R.-J. Polyhedron 2002, 21, 1063. https://doi.org/10.1016/S0277-5387(02)00842-2.Search in Google Scholar

Received: 2020-02-02
Accepted: 2020-03-18
Published Online: 2020-07-06
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Research articles
  4. Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
  5. Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
  6. Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
  7. Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
  8. Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
  9. The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
  10. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
  11. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
  12. Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
  13. High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
  14. High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
  15. Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
  16. Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
  17. New compounds of the Li2MSn3S8 type
  18. Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
  19. Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
  20. Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
  21. Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
  22. Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
  23. Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
  24. Notes
  25. La5Ir1.73In4.27 with Lu5Ni2In4-type structure
  26. The scandium-rich indide Sc50Pt13.47In2.53
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0036/html
Scroll to top button