Home New compounds of the Li2MSn3S8 type
Article
Licensed
Unlicensed Requires Authentication

New compounds of the Li2MSn3S8 type

  • Eva M. Heppke , Shamini Mahadevan and Martin Lerch EMAIL logo
Published/Copyright: July 6, 2020
Become an author with De Gruyter Brill

Abstract

The substitution of Cu/Ag by lithium in complex thiospinels with the general formula AI2BIICIV3XVI8 was achieved by ball milling and a subsequent annealing step in an atmosphere of H2S. Four hitherto unknown compounds Li2MSn3S8 with M = Mg, Mn, Fe, Ni were obtained without side phases and have been structurally investigated. From X-ray powder diffraction experiments, space group Fd3¯m and a spinel-type structure are suggested. In these so-called normal spinels, lithium occupies one eighth of the tetrahedral voids (Wyckoff position 8a) of the cubic closest packing of the sulfide ions whereas M and Sn can be found on one half of the octahedral voids (Wyckoff position 16d).


Corresponding author: Martin Lerch, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany, E-mail:

Funding source: German Science Foundation

Award Identifier / Grant number: DFG, LE 781/19-1

Acknowledgment

The authors would like to thank Astrid Müller-Klauke for performing the ICP-OES analysis and Leo Sagurna for his support and provision of the UV–Vis spectrometer (both TU Berlin).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This project was partially supported by the German Science Foundation (DFG, LE 781/19-1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jumas, J. C., Philippot, E., Maurin, M. Structure du rhodostannite synthétique. Acta Crystallogr. 1979, B35, 2195–2197; https://doi.org/10.1107/s0567740879008761.Search in Google Scholar

2. Yajima, J., Ohta, E., Kanazawa, Y. Toyohaite Ag2FeSn3S8 a new mineral. Mineral. J. 1991, 15, 222–232; https://doi.org/10.2465/minerj.15.222.Search in Google Scholar

3. Lavela, P., Tirado, J. L., Morales, J., Olivier-Fourcade, J., Jumas, J. C. Lithium intercalation and copper extraction in spinel sulfides of general formula Cu2MSn3S8 M-Mn-Fe-Co-Ni. J. Mater. Chem. 1996, 6, 41–47; https://doi.org/10.1039/jm9960600041.Search in Google Scholar

4. Cochez, M. A., Jumas, J. C., Lavela, P., Morales, J., Olivier-Fourcade, J., Tirado, J. L. New tin-containing spinel sulfide electrodes for ambient temperature rocking chair cells. J. Power Sources 1996, 62, 101–105; https://doi.org/10.1016/s0378-7753(96)02409-3.Search in Google Scholar

5. Chykhrij, S. I., Sysa, L. V., Parasyuk, O. V., Piskach, L. V. Crystal structure of the Cu2CdSn3S8 compound. J. Alloys Compd. 2000, 307, 124–126; https://doi.org/10.1016/s0925-8388(00)00803-3.Search in Google Scholar

6. Branci, C., Womes, M., Lippens, P. E., Olivier-Fourcade, J., Jumas, J. C. Use of X-ray absorption spectra as a “fingerprint” of the local environment in complex chalcogenides. J. Solid State Chem. 2000, 150, 363–370; https://doi.org/10.1006/jssc.1999.8607.Search in Google Scholar

7. Garg, G., Bobev, S., Ganguli, A. K. Single Crystal structure and electrical properties of Cu8Ni4Sn12S32. J. Alloys Compd. 2001, 327, 113–115; https://doi.org/10.1016/s0925-8388(01)01549-3.Search in Google Scholar

8. Garg, G., Ramanujachary, K. V., Lofland, S. E., Lobanov, M. V., Greenblatt, M., Maddanimath, T., Vijayamohanan, K., Ganguli, A. K. Crystal structure, magnetic and electrochemical properties of a quaternary thiospinel: Ag2MnSn3S8. J. Solid State Chem. 2003, 174, 229–232; https://doi.org/10.1016/s0022-4596(03)00240-8.Search in Google Scholar

9. Parasyuk, O. V., Olekseyuk, I. D., Piskach, L. V., Volkov, S. V., Pekhnyo, V. I. Phase relations in the Ag2S–CdS–SnS2 system and the crystal structure of the compounds. J. Alloys Compd. 2005, 399, 173–177; https://doi.org/10.1016/j.jallcom.2005.03.023.Search in Google Scholar

10. Sachanyuk, V. P., Fedorchuk, A. O., Olekseyuk, I. D., Parasyuk, O. V. New compounds Cu2MnTi3S8 and Cu2NiTi3S8 with thiospinel structure. Mater. Res. Bull. 2007, 42, 143–148; https://doi.org/10.1016/j.materresbull.2006.05.001.Search in Google Scholar

11. Kormosh, Z., Fedorchuk, A., Wojciechowski, K., Tataryn, N., Parasyuk, O. The Cu2FeTi3S8 and Cu2FeZr3S8 compounds: Crystal structure and electroanalytical application. Mater. Sci. Eng. C 2011, 31, 540–544; https://doi.org/10.1016/j.msec.2010.11.015.Search in Google Scholar

12. Branci, C., Sarradin, J., Olivier-Fourcade, J., Jumas, J. C. Structural modifications related to lithium intercalation into iron thiospinels. J. Power Sources 1999, 81–82, 282–285; https://doi.org/10.1016/s0378-7753(99)00201-3.Search in Google Scholar

13. Krykhovets, O. V., Sysa, L. V., Olekseyuk, I. D., Glowyak, T. Crystal structure of Ag2In2GeSe6. J. Alloys Compd. 1999, 287, 181–184; https://doi.org/10.1016/s0925-8388(99)00016-x.Search in Google Scholar

14. Besse, R., Da Silva, J. L. F. The role of the alkali and chalcogen atoms on the stability of the layered chalcogenide A2MIIM3IVQ8 (A = alkali-metal; M = metal-cations; Q = chalcogen) compounds: a density functional theory investigation within van der Waals corrections. J. Phys.: Condens. Matter 2017, 29, 035402; https://doi.org/10.1088/1361-648x/29/3/035402.Search in Google Scholar

15. Sabrowsky, H., Thimm, A., Vogt-Mertens, P. NaLiS: Ein weiteres interalkalimetallsulfid / NaLiS: A nother inter alkaline metal sulphide. Z. Naturforsch. 1985, 40b, 1759–1760; https://doi.org/10.1515/znb-1985-1229.Search in Google Scholar

16. Aitken, J. A., Larson, P., Mahanti, S. D., Kanatzidis, M. G. Li2PbGeS4 and Li2EuGeS4 polar chalcopyrites with a severe tetragonal compression. Chem. Mater. 2001, 13, 4714–4721; https://doi.org/10.1021/cm0105357.Search in Google Scholar

17. Garg, G., Bobev, S., Roy, A., Ghose, J., Das, D., Ganguli, A. K. Single crystal structure and Mössbauer studies of a new cation-deficient thiospinel: Cu5.47Fe2.9Sn13.1S32. Mater. Res. Bull. 2001, 36, 2429–2435; https://doi.org/10.1016/s0025-5408(01)00736-x.Search in Google Scholar

18. Garg, G., Bobev, S., Ganguli, A. K. Single crystal structures of two new cation-deficient thiospinels: Cu7.38(11)Mn4Sn12S32 and Cu7.07(6)Ni4Sn12S32. Solid State Ionics 2002, 146, 195–198; https://doi.org/10.1016/s0167-2738(01)01006-2.Search in Google Scholar

19. Heppke, E. M., Klenner, S., Janka, O., Pöttgen, R., Lerch, M. Mechanochemical Synthesis of Cu2MgSn3S8 and Ag2MgSn3S8. Z. Anorg. Allg. Chem. 2020, 646, 5–9; https://doi.org/10.1002/zaac.201900190.Search in Google Scholar

20. Shannon, R. D. Bond distances in sulfides and a preliminary table of sulfide crystal radii. In Structure and Bonding in Crystals; O’Keeffe, M., Navrotsky, A., Eds., Vol. 2. Academic Press, Inc.: New York, 1981; pp. 53–70.10.1016/B978-0-12-525102-0.50009-8Search in Google Scholar

21. Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46; https://doi.org/10.1016/0025-5408(68)90023-8.Search in Google Scholar

22. Tauc, J., Grigorovici, R., Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 1966, 15, 627–637; https://doi.org/10.1002/pssb.19660150224.Search in Google Scholar

23. Pechini, M. P., US Patent No. 3330697, 1967.Search in Google Scholar

24. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/s0021889869006558.Search in Google Scholar

25. Rodríguez-Carvajal, J. FullProf, A Program for Rietveld Refinement and Pattern Matching Analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the 15th International Congress of the IUCr, Toulouse, France, 1990; p. 127.Search in Google Scholar

Received: 2020-04-16
Accepted: 2020-04-27
Published Online: 2020-07-06
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Research articles
  4. Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate
  5. Diethyl (iodoethynyl)phosphonate and (iodoethynyl)diphenylphosphane oxide: crystal structures and some cycloaddition reactions
  6. Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid
  7. Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand
  8. Single-crystal structure determination of LaNi5–xInx and LaNi9–xIn2+x
  9. The reaction of imidazo[1,5-a]pyridines with ninhydrin revisited
  10. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation
  11. A cobalt(II) coordination polymer constructed with the 2-carboxy-phenoxyacetate linker showing a corrugated layer structure: synthesis, structure analysis and magnetic properties
  12. Hexaniobate anions connected by [Ni(cyclam)]2+ complexes yield two interpenetrating three-dimensional networks
  13. High-pressure synthesis and crystal structure of the samarium meta-oxoborate γ-Sm(BO2)3
  14. High-pressure synthesis and characterization of the non-centrosymmetric scandium borate ScB6O9(OH)3
  15. Al5B12O25(OH) and Ga4InB12O25(OH) – two additional triel borates with the structure type M5B12O25(OH) (M = Ga, In)
  16. Al/N-based active Lewis pairs: isocyanate insertion products as efficient nucleophiles employed for the facile generation of highly functional molecules
  17. New compounds of the Li2MSn3S8 type
  18. Synthesis and magnetic properties of the extended RE4Pd9Al24 series (RE = Sc, Y, Ce–Nd, Sm, Gd–Lu)
  19. Solid solutions EuAu4Cd2−xMgx with a remarkably stable ferromagnetic ground state
  20. Mechanistic investigations on C–H activated dealkylating cyclo-amination reactions of substituted triazenes, formamidines and amidines
  21. Orthoamide und Iminiumsalze, IIC. Darstellung von N-(ω-Ammonioalkyl)-N,N′,N′,N″,N″-peralkylierten Guanidiniumsalzen und N-(ω-Aminoalkyl)-N′,N′,N″,N″-tetramethylguanidinen
  22. Orthoamide und Iminiumsalze, IC. Synthese und Reaktionen von N,N,N′,N′,N′′-Pentaalkyl-N′′-[2-(N,N,N′,N′,N′′-pentaalkylguanidinio)ethyl]-guanidiniumsalzen
  23. Orthoamide und Iminiumsalze, C. Vinyloge Guanidiniumsalz-basierte ionische Flüssigkeiten sowie phenyloge Guanidiniumsalze und Orthoamide
  24. Notes
  25. La5Ir1.73In4.27 with Lu5Ni2In4-type structure
  26. The scandium-rich indide Sc50Pt13.47In2.53
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0050/html
Scroll to top button