Startseite Naturwissenschaften Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies

  • Veeraragavan Vijayakumar , Chidambaram Ramesh Kumar EMAIL logo , Nagarajan Sivaraman , Ammath Suresh , Avinash S. Kanekar , Arunasis Bhattacharyya und Prasanta K. Mohapatra
Veröffentlicht/Copyright: 15. April 2019

Abstract

The extraction behaviour of U(VI), Th(IV) and Nd(III) was investigated as a function of nitric acid concentration for diamide based extractants, namely, N,N,N′,N′-tetraoctyl-3-carbonylpentanediamide (TOCPDA) and 4-carbonyl-heptanedioic acid bis-dioctylamide (CHADA). In addition, the distribution ratio was also measured for Pu(IV) and Sr(II) with 1.1 M CHADA in n-dodecane. These extractants were synthesized by adopting simple acid, amine coupling reaction with DCC (dicyclohexylcarbodiimide) and DMAP (N,N′-dimethylaminopyridine) as the coupling agent. The newly synthesized extractants were characterized by FT-IR, NMR, Mass, CHNS and HPLC. The extraction results indicated that CHADA shown has better extraction behavior for U(VI) compared to TOCPDA. In addition, CHADA coated HPLC column was examined for the retention behaviour of U(VI), Th(IV), and Nd(III). Computation studies based on density functional theory (DFT) were carried out to understand the complexing behaviour of U(VI), Pu(IV) and Sr(II) with CHADMA and TMCPDA.

Award Identifier / Grant number: CSR-KN/CRS-67/2014-15

Funding statement: VV and CRK thank UGC-DAE consortium for scientific research (Funder Id: http://dx.doi.org/10.13039/501100010426, CSR-KN/CRS-67/2014-15), India, for providing research fund and are grateful to the management of Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology for their infrastructure support to our laboratory.

References

1. Antony, M. P., Venkatesan, K. A., Suneesh, A. S., Nagarajan, K., Vasudeva Rao, P. R.: Separation of trivalent actinides from high-active waste. Proc. Chem. 7, 130 (2012).10.1016/j.proche.2012.10.023Suche in Google Scholar

2. Moffat, A. J., Thomson, R. D.: The chemical stability of tributyl phosphate in some nitrate and chloride systems. J. Inorg. Nucl. Chem. 16, 365 (1961).10.1016/0022-1902(61)80516-2Suche in Google Scholar

3. Siddall, H. T.: Effects of structure of N, N′-disubstituted amides on their extraction of actinide and zirconium nitrates and of nitric acid. J. Phys. Chem. 64(12), 1863 (1960).10.1021/j100841a014Suche in Google Scholar

4. Manchanda, V. K., Pathak, P. N.: Amides and diamides as promising extractant in the back end of the nuclear fuel cycle. Sep. Puri. Technol. 35, 85 (2004).10.1016/j.seppur.2003.09.005Suche in Google Scholar

5. Gasparini, G. M., Grossi, G.: Application of N, N-dialkyl aliphatic amides in the separation of some actinides. Sep. Sci. Technol. 15(4), 825 (1980).10.1080/01496398008076273Suche in Google Scholar

6. Musikas, C.: Potentiality of non-organophosphorus extractant in chemical separations of actinide. Sep. Sci. Technol. 23(12), 1211 (1988).10.1080/01496398808075626Suche in Google Scholar

7. Gasparini, G. M., Grossi, G.: Review article long chain disubstituted aliphatic amides as extracting agents in industrial applications of solvent extraction. Solvent Extr. Ion Exch. 4(6), 1233 (1986).10.1080/07366298608917921Suche in Google Scholar

8. Medic, C., Hudson, M. J., Liljenzin, J. O., Glatz, J.-P., Nannicini, R., Facchini, A., Kolarik, Z., Odoj, Z. R.: New Partitioning Techniques for Minor Actinides, EUR 19149, European Commission, Luxembourg (2000).Suche in Google Scholar

9. Ansari, S. A., Pathak, P., Mohapatra, P. K., Manchanda, V. K.: Aqueous partitioning of minor actinides by different processes. Sep. Purif. Rev. 40(1), 43 (2011).10.1080/15422119.2010.545466Suche in Google Scholar

10. Mathur, J. N., Murali, M. S., Nash, K. L.: Actinide partitioning: a review. Solvent Extr. Ion Exch. 19, 357 (2001).10.1081/SEI-100103276Suche in Google Scholar

11. Schulz, W. W., Horwitz, E. P.: The truex process and the management of liquid truex U waste. Sep. Sci. Technol. 23, 1191 (1988).10.1080/01496398808075625Suche in Google Scholar

12. Horwitz, E. P., Kalina, D. G., Diamond, H., Vandegrift, G. F., Schulz, W. W.: The TRUEX process: a process for the extraction of the transuranic elements from nitric acid wastes utilizing modified purex solvent. Solvent Extr. Ion Exch. 3(1&2), 75 (1985).10.1080/07366298508918504Suche in Google Scholar

13. Turanov, A. N., Karandashev, V. K., Sharova, E. V., Genklna, G. K., Artyushln, O. L., Balmukhanova, A.: Effect of ionic liqid on the extraction of actinides and lanthanides with 1,2,3-triazole-modified carbamoylmethylphosphine oxide from nitric acid solutions. Radiochim. Acta. 106(5), 1 (2017).10.1515/ract-2017-2851Suche in Google Scholar

14. Musikas, C., Hubert, H.: Extraction by N,N′-tetraalkylmalonamides II. Solvent Extr. Ion Exch. 5(5), 877 (1987).10.1080/07366298708918598Suche in Google Scholar

15. Cuillerdier, C., Musikas, C., Hoel, P., Nigond, L., Vitart, X.: Malonamides as new extractants for nuclear waste solutions. Sep. Sci. Technol. 26(9), 1229 (1991).10.1080/01496399108050526Suche in Google Scholar

16. Courson, O., Lebrun, M., Malmbeck, R., Pagliosa, G., Römer, K., Sätmark, B., Glatz, J.-P.: Partitioning of minor actinides from HLLW using the DIAMEX process. Pt. 1. Demonstration of extraction performances and hydraulic behaviour of the solvent in a Continuous process. Radiochim. Acta. 88(12), 857 (2000).10.1524/ract.2000.88.12.857Suche in Google Scholar

17. Nair, G. M., Prabhu, D. R., Mahajan, G. R., Shukla, J. P.: Tetra-butyl-malonamide and tetra-isobutyl malonamide as extractants for uranium(VI) and plutonium(IV). Solvent Extr. Ion Exch. 11, 831 (1993).10.1080/07366299308918189Suche in Google Scholar

18. Patil, A. B., Shinde, V. S., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K.: Modified synthesis scheme for N,N´-dimethyl-N,N´-dioctyl-2,(2´-hexyloxyethyl) malonamide (DMDOHEMA) and its comparison with proposed solvents for actinide partitioning. Radiochim Acta. 101, 93 (2013).10.1524/ract.2013.1998Suche in Google Scholar

19. Prathibha, T., Kumaresan, R., Robert Selvan, B., Venkatesan, K. A., Antony, M. P., Vasudeva Rao, P. R.: N,N′-dialkyl-2-hydroxyacetamides for modifier-free separation of trivalent actinides from nitric acid medium. Radiochim Acta. 104(3), 173 (2015).10.1515/ract-2015-2477Suche in Google Scholar

20. Sasaki, S., Sugo, Y., Suzuki, S., Tachimori, S.: The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3n-dodecane system. Solvent Extr. Ion Exch. 19, 91 (2001).10.1081/SEI-100001376Suche in Google Scholar

21. Ansari, S. A., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K.: Chemistry of Diglycolamides: Promising Extractants for Actinide Partitioning. Chem. Rev. 112, 1751 (2012).10.1021/cr200002fSuche in Google Scholar PubMed

22. Wilden, A., Modolo, G., Lange, S., Sadowski, F., Beele, B. B., Skerencak-Frech, A., Panak, P. J., Iqbal, M., Verboom, W., Geist. A., Bosbach, D.: Modified diglycolamides for the An(III) + Ln(III) co-separation: evaluation by solvent extraction and time-resolved laser fluorescence spectroscopy. Solvent Extr. Ion Exch. 32, 119 (2014).10.1080/07366299.2013.833791Suche in Google Scholar

23. Iqbal, M., Huskens, J., Verboom, W., Sypula, M., Modolo, G.: Synthesis and Am/Eu extraction of novel TODGA derivatives. Supramol. Chem. 22, 827 (2010).10.1080/10610278.2010.506553Suche in Google Scholar

24. Leoncini, A., Huskens, J., Verboom, W.: Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 46, 7229 (2017).10.1039/C7CS00574ASuche in Google Scholar PubMed

25. Dutta, S., Raut, D. R., Mohapatra, P. K.: Role of diluent on the separation of 90Y from 90Sr by solvent extraction and supported liquid membrane using T2EHDGA as the extractant. Appl. Radiant. Isotope. 70, 670 (2012).10.1016/j.apradiso.2011.11.064Suche in Google Scholar

26. Pereze-Bustamate, T. S., Palomares Delgado, F.: The extraction and spectrophotometric determination of sexavalent uranium with arsenazo III in aqueous-organic media. Analyst 96, 407 (1971).10.1039/an9719600407Suche in Google Scholar

27. Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Electronic structure calculations on Work station computers: The program system turbomole. Chem. Phys. Lett. 162, 165 (1989).10.1016/0009-2614(89)85118-8Suche in Google Scholar

28. Treutler, O., Ahlrichs, R.: Efficient molecular numerical integration schemes. J. Chem. Phys. 102, 346 (1995).10.1063/1.469408Suche in Google Scholar

29. TURBOMOLE V6.6 a development of the University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989−2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.Suche in Google Scholar

30. Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic Behavior. Phys. Rev. A. 38, 3098 (1988).10.1103/PhysRevA.38.3098Suche in Google Scholar

31. Perdew, J. P.: Density-functional approximation for the correlation energy of the in homogeneous electron gas. Phys. Rev. B. 33, 8822 (1986).10.1103/PhysRevB.33.8822Suche in Google Scholar PubMed

32. Sasaki, Y.: Tachimori, S.: Extraction of actinides (III), (IV), (V), (VI), and lanthanides (III) by structurally tailored diamides. Solvent Extr. Ion Exch. 20(1), 21 (2002).10.1081/SEI-100108822Suche in Google Scholar

33. Jensen, M. P., Yaita, T., Chiarizia, R.: Reverse-micelle formation in the partitioning of trivalent f-element cations by biphasic systems containing a tetraalkyldiglycolamide. Langmuir 23(9), 4765 (2007).10.1021/la0631926Suche in Google Scholar PubMed

34. Sengupta, A., Bhattacharyya, A., Verboom, W., Ali, S. M., Mohapatra, P. K.: Insight into the complexation of actinides and lanthanides with diglycolamide derivatives: experimental and density functional theoretical studies. J. Phys. Chem. B. 121, 2640 (2017).10.1021/acs.jpcb.6b11222Suche in Google Scholar PubMed

35. Narbutt, J., Wodyński A., Pecul, M.: The selectivity of diglycolamide (TODGA) and bis-triazine-bipyridine (BTBP) ligands in actinide/lanthanide complexation and solvent extraction separation-a theoretical approach. Dalton Trans. 44, 2657 (2015).10.1039/C4DT02657HSuche in Google Scholar

36. Bhattacharyya, A., Leoncini, A., Egberink, R. J. M., Mohapatra, P. K., Verma, P. K., Kanekar, A. S., Yadav, A. K., Jha, S. N.; Bhattacharyya, D., Huskens, J., Verboom, W.: First report on the complexation of actinides and lanthanides using 2,2′,2′′-(((1,4,7-Triazonane-1,4,7- triyl)tris(2-oxoethane-2,1-diyl)) tris(oxy)) tris(N, N-dioctylacetamide): synthesis, extraction, luminescence, EXAFS, and DFT studies. Inorg. Chem. 57(20), 12987 (2018).10.1039/C6DT02930BSuche in Google Scholar

37. Kou, F., Yang, S., Qian, H., Zhang, L., Beavers, C. M., Teat S. J., Tian, G.: A fluorescence study on the complexation of Sm(III), Eu(III) and Tb(III) with Tetraalkyldiglycolamides (TRDGA) in aqueous solution, in solid state, and in solvent extraction. Dalton Trans. 45, 18484 (2016).10.1021/acs.jpca.5b06370Suche in Google Scholar PubMed

38. Lan, J.-H., Wang, C.-Z., Wu, Q.-Y., Wang, S.-A., Feng, Y.-X., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q.: A quasi-relativistic density functional theory study of the actinyl(VI, V) (An=U, Np, Pu) complexes with a six-membered macrocycle containing pyrrole, pyridine, and furan subunits. J. Phy. Chem. A. 119(34), 9178 (2015).10.1021/acs.jpca.5b06370Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2019-3102).


Received: 2019-01-10
Accepted: 2019-03-08
Published Online: 2019-04-15
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3102/html
Button zum nach oben scrollen