Abstract
This work reports thermodynamic characterizations of lanthanide β-diketonates for use in nuclear fission product separation. Adsorption and sublimation enthalpies have been shown to be linearly correlated, therefore there is motivation to determine sublimation thermodynamics. An isothermal thermogravimetric analysis method is employed on fourteen lanthanide chelates for the ligands 2,2,6,6-tetramethyl-3,5-heptanedione and 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione to determine sublimation enthalpies. No linear trend is seen across the series; values show a cyclical nature, possibly indicating a greater influence of chemisorption for some complexes and less of a role of physisorption in dictating adsorption differences between lanthanides in the same series. This is in line with previous reports in terms of the chromatographic separation order of the lanthanides. The results reported here can be used to manipulate separations parameters and column characteristics to better separate these lanthanide chelates. Fourteen chelates of the ligand 1,1,1-trifluoro-2,4-pentanedione are also thermally characterized but found to not sublime and be undesirable for this method. Additionally, all chelates are characterized by constant heating thermogravimetric analysis coupled with mass spectrometry, melting point analysis, elemental analysis and FTIR.
Funding source: Office of Defense Programs
Award Identifier / Grant number: DE-NA0001983
Funding source: Science and Technology Directorate
Award Identifier / Grant number: 2012-DN- 130-NF0001
Funding statement: This work was performed under Office of Defense Programs, Funder Id: http://dx.doi.org/10.13039/100006127, grant number DE-NA0001983 from the Stewardship Science Academic Alliances (SSAA) Program of the National Nuclear Security Administration (NNSA). This material is also based upon work supported by the U.S. Department of Homeland Security under Science and Technology Directorate, Funder Id: http://dx.doi.org/10.13039/100008287, Grant Award Number, 2012-DN- 130-NF0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security, Department of Energy or NNSA. The authors wish to thank Katrina Pangilinan in the Polymer Characterization Lab at the University of Tennessee at Knoxville, Dawn Riegner and Jordan Johnson at the U.S. Military Academy, and Dr. George Schweitzer in the Department of Chemistry at the University of Tennessee at Knoxville. Finally, the authors wish to thank Adam Stratz, Daniel Harding and Jeff Lux in the Department of Nuclear Engineering at the University of Tennessee at Knoxville.
References
1. Anastas, P. T., Warner, J. C.: Green Chemistry: Theory and Practice, Oxford University Press, Oxford (1998).Search in Google Scholar
2. Fallis, A.: Efficient utilization of elements. J. Chem. Inf. Model. 53, 1689 (2013).10.1021/ci400128mSearch in Google Scholar
3. Schädel, M., Shaughnessy, D. A.: The Chemistry of Superheavy Elements, Springer, New York (2013).10.1007/978-3-642-37466-1Search in Google Scholar
4. Zvára, I.: The Inorganic Radiochemistry of Heavy Elements, Springer Netherlands, Dordrecht (2008).10.1007/978-1-4020-6602-3Search in Google Scholar
5. Even, J., Yakushev, A., Dullmann, C. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schadel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Turler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491 (2014).10.1126/science.1255720Search in Google Scholar PubMed
6. 111th Congress: Nuclear Forensics and Attribution Act. Congress, USA (2010).Search in Google Scholar
7. Moody, K. J., Grant, P. M., Hutcheon, I. D.: Nuclear Forensic Analysis, CRC Press, Boca Raton (2014).Search in Google Scholar
8. Fedchenko, V.: The role of nuclear forensics in nuclear security. Strateg. Anal. 38, 230 (2014).10.1080/09700161.2014.884442Search in Google Scholar
9. Shahbazi, S., Stratz, S. A., Auxier, J. D., Hanson, D. E., Marsh, M. L., Hall, H. L.: Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates. J. Radioanal. Nucl. Chem. 311, 617 (2017).10.1007/s10967-016-5005-0Search in Google Scholar PubMed
10. Eisentraut, K. J., Sievers, R. E.: Volatile rare earth chelates. J. Am. Chem. Soc. 87, 5254 (1965).10.1021/ja00950a051Search in Google Scholar
11. Sievers, R. E., Ponder, B. W., Morris, M. L., Moshier, R. W.: Gas phase chromatography of metal chelates of acetylacetone, trifluoroacetylacetone, and hexafluoroacetylacetone. Inorg. Chem. 2, 693 (1963).10.1021/ic50008a006Search in Google Scholar
12. Springer, C. S., Meek, D. W., Sievers, R. E.: Rare earth chelates of 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-,6-octanedione. Inorg. Chem. 6, 1105 (1966).10.1021/ic50052a009Search in Google Scholar
13. Auxier, J. D., Jordan, J. A., Stratz, S. A., Shahbazi, S., Hanson, D. E., Cressy, D., Hall, H. L.: Thermodynamic analysis of volatile organometallic fission products. J. Radioanal. Nucl. Chem. 307, 1621 (2016).10.1007/s10967-015-4653-9Search in Google Scholar PubMed
14. Berg, E. W., Acosta, J. J. C.: Fractional sublimation of the B-diketone chelates of the lanthanide and related elements. Anal. Chim. Acta. 40, 101 (1968).10.1016/S0003-2670(00)86700-8Search in Google Scholar
15. Auxier, J. D., Hanson, D. E., Marsh, M. L., Jones, S. J., Penchoff, D. A., Jenkins, D. M., Hall, H. L.: Gas-phase thermochromatographic separations of fission and activation products. In: Annual Meeting of the Institute for Nuclear Materials Management (2014).Search in Google Scholar
16. Hanson, D. E., Garrison, J. R., Hall, H. L.: Assessing thermochromatography as a separation method for nuclear forensics: current capability vis-a-vis forensic requirements. J. Radioanal. Nucl. Chem. 289, 213 (2011).10.1007/s10967-011-1063-5Search in Google Scholar
17. Eichler, B., Türler, A., Gäggeler, H. W.: Thermochemical characterization of seaborgium compounds in gas adsorption chromatography. J. Phys. Chem. A. 103, 9296 (1999).10.1021/jp9917751Search in Google Scholar
18. Düllmann, C. E., Eichler, B., Eichler, R., Gäggeler, H. W., Türler, A.: On the stability and volatility of group 8 tetroxides, MO4 (M=ruthenium, osmium, and hassium (Z=108)). J. Phys. Chem. B. 106, 6679 (2002).10.1021/jp0257146Search in Google Scholar
19. Coats, A. W., Redfern, J. P.: Kinetic parameters from thermogravimetric data. Nature 201, 68 (1964).10.1038/201068a0Search in Google Scholar
20. Horowitz, H. H., Metzger, G.: A new analysis of thermogravimetric traces. Anal. Chem. 35, 1464 (1963).10.1021/ac60203a013Search in Google Scholar
21. Freeman, E. S., Carroll, B.: The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J. Phys. Chem. 62, 394 (1958).10.1021/j150562a003Search in Google Scholar
22. Flynn, J. H., Wall, L. A.: General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 70A, 487 (1966).10.6028/jres.070A.043Search in Google Scholar
23. Sadeek, S. A.: Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes. J. Mol. Struct. 753, 1 (2005).10.1016/j.molstruc.2005.06.011Search in Google Scholar
24. Langmuir, I.: The vapor pressure of metallic tungsten. Phys. Rev. 2, 329 (1913).10.1103/PhysRev.2.329Search in Google Scholar
25. Ashcroft, S. J.: The measurement of enthalpies of sublimation by thermogravimetry. Thermochim. Acta. 2, 512 (1971).10.1016/0040-6031(71)80021-7Search in Google Scholar
26. Fahlman, B. D., Barron, A. R.: Substituent effects on the volatility of metal β-diketonates. Adv. Mater. Opt. Electron. 10, 223 (2000).10.1002/1099-0712(200005/10)10:3/5<223::AID-AMO411>3.0.CO;2-MSearch in Google Scholar
27. Gillan, E. G., Bott, S. G., Barron, A. R.: Volatility studies on gallium chalcogenide cubanes: thermal analysis and determination of sublimation enthalpies. Chem. Mater. 9, 796 (1997).10.1021/cm960485jSearch in Google Scholar
28. Price, D. M., Hawkins, M.: Calorimetry of two disperse dyes using thermogravimetry. Thermochim. Acta. 315, 19 (1998).10.1016/S0040-6031(98)00272-XSearch in Google Scholar
29. Turnipseed, S. B., Barkley, R. M., Sievers, R. E.: Synthesis and characterization of alkaline-earth-metal beta-diketonate complexes used as precursors for chemical vapor deposition of thin film superconductors. Inorg. Chem. 30, 1164 (1991).10.1021/ic00006a003Search in Google Scholar
30. Binnemans, K.: Rare-earth beta-diketonates. In: K. A. Gschneidner Jr., J.-C. G. Bünzli, V. K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Elsevier B.V., Amsterdam (2005).10.1016/S0168-1273(05)35003-3Search in Google Scholar
31. Leskela, M., Niinisto, L., Nykanen, E., Soininen, P., Tiitta, M.: Thermoanalytical and mass spectrometric studies on volatile beta-diketone chelates. Thermochim. Acta. 175, 91 (1991).10.1016/0040-6031(91)80250-MSearch in Google Scholar
32. McAleese, J., Plakatouras, J. C., Steele, B. C. H.: The use of Ce(fod)4 as a precursor for the growth of ceria films by metal–organic chemical vapour deposition. Thin Solid Films. 280, 152 (1996).10.1016/0040-6090(95)08193-3Search in Google Scholar
33. Johnson, A. T., Parker, T. G., Dickens, S. M., Pfeiffer, J. K., Oliver, A. G., Wall, D., Wall, N. A., Finck, M. R., Carney, K. P.: Synthesis and crystal structures of volatile neptunium(IV) β-diketonates. Inorg. Chem. 56, 13553 (2017).10.1021/acs.inorgchem.7b02290Search in Google Scholar PubMed
34. Moeller, T., Kremers, H. E.: The basicity characteristics of scandium, yttrium, and the rare earth elements. Chem. Rev. 37, 97 (1945).10.1021/cr60116a003Search in Google Scholar
35. Westmore, J. B., Reimer, M. L. J., Reichert, C.: Ionization energies of metal chelates. Acetylacetonates, trifluoroacetylacetonates, and hexafluoroacetylacetonates of trivalent metals of the first transition series. Can. J. Chem. 59, 1797 (1981).10.1139/v81-268Search in Google Scholar
36. Hubert-Pfalzgraf, L. G.: Metal alkoxides and β-diketonates as precursors for oxide and non-oxide thin films. Appl. Organomet. Chem. 6, 627 (1992).10.1002/aoc.590060805Search in Google Scholar
37. Stratz, S. A., Jones, S. A., Oldham, C. J., Mullen, A. D., Jones, A. V., Auxier, J. D., Hall, H. L.: Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis. J. Radioanal. Nucl. Chem. 310, 1273 (2016).10.1007/s10967-016-4920-4Search in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3085).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dependence of UO2 surface morphology on processing history within a single synthetic route
- Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
- Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media
- Leaching of 137Cs from Chernobyl fuel debris: corium and “lava”
- Retention behavior of anionic radionuclides using metal hydroxide sludge
- Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates
- 99mTc(I) carbonyl-radiolabeled lipid based drug carriers for temozolomide delivery and bioevaluation by in vitro and in vivo
- FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction
- Rapid Communication
- 225Ac/213Bi generator based on inorganic sorbents
Articles in the same Issue
- Frontmatter
- Dependence of UO2 surface morphology on processing history within a single synthetic route
- Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
- Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media
- Leaching of 137Cs from Chernobyl fuel debris: corium and “lava”
- Retention behavior of anionic radionuclides using metal hydroxide sludge
- Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates
- 99mTc(I) carbonyl-radiolabeled lipid based drug carriers for temozolomide delivery and bioevaluation by in vitro and in vivo
- FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction
- Rapid Communication
- 225Ac/213Bi generator based on inorganic sorbents