Startseite 225Ac/213Bi generator based on inorganic sorbents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

225Ac/213Bi generator based on inorganic sorbents

  • Aleksandr N. Vasiliev EMAIL logo , Stanislav V. Ermolaev , Elena V. Lapshina , Boris L. Zhuikov und Nikolay D. Betenekov
Veröffentlicht/Copyright: 22. Juni 2019

Abstract

A scheme of an “inverse” generator based on an inorganic sorbent (annealed zirconium and yttrium mixture oxides) has been proposed and tested. The generator demonstrated high yield of the 213Bi product (up to 97 % in 0.5 mL of eluate), high degree of purification from the actinium isotopes (up to 10−2 % of initial 225Ac in 3 M NaNO3 solution), as well as the products of 227Ac decay, and low radiation impact on the sorbent. Application of circulating approach to the sorption of 213Bi provides decreasing processing time to 5 min at higher yield of the product.

Award Identifier / Grant number: 17-73-10465

Funding statement: This work has been supported by the Russian Science Foundation under Contract № Funder Id: http://dx.doi.org/10.13039/501100006769, 17-73-10465.

References

1. Chérel, M., Barbet, J.: Alpha emitting radionuclides and radiopharmaceuticals for therapy. – №. IAEA-TM--44815 (2013).Suche in Google Scholar

2. Morgenstern, A., Bruchertseifer, F., Apostolidis, C.: Targeted alpha therapy with 213Bi. Curr. Radiopharm. 4(4), 295 (2011).10.2174/1874471011104040295Suche in Google Scholar PubMed

3. Makvandi, M., Dupis, E., Engle, J. W., Nortier, F. M., Fassbender, M. E., Simon, S., Birnbaum, E. R., Atcher, R. W., John, K. D., Rixe, O., Norenberg, J. P.: Alpha-emitters and targeted alpha therapy in oncology: from basic science to clinical investigations. Target. Oncol. 13(2), 189 (2018).10.1007/s11523-018-0550-9Suche in Google Scholar PubMed

4. Marcu, L., Bezak, E., Allen, B. J.: Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hematol. 123, 7 (2018).10.1016/j.critrevonc.2018.01.001Suche in Google Scholar PubMed

5. Morgenstern, A., Apostolidis, C., Kratochwil, C., Sathekge, M., Krolicki, L., Bruchertseifer, F.: An overview of targeted alpha therapy with actinium-225 and bismuth-213. Curr. Radiopharm. 11(3), 200 (2018).10.2174/1874471011666180502104524Suche in Google Scholar PubMed PubMed Central

6. Zhuikov, B. L., Kalmykov, S. N., Ermolaev, S. V., Aliev, R. A., Kokhanyuk, V. M.: Produce of 225Ac and 223Ra from thorium irradiated with protons. Radiochemistry 53(1), 66 (2011).10.1134/S1066362211010103Suche in Google Scholar

7. Ermolaev, S. V., Zhuikov, B. L., Kokhanyuk, V. M., Matushko, V. L., Kalmykov, S. N., Aliev, R. A., Tananaev, I. G., Myasoedov, B. F.: Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim. Acta. 100(4), 1 (2012).10.1524/ract.2012.1909Suche in Google Scholar

8. Qaim, S. M.: Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 305(1), 233 (2015).10.1007/s10967-014-3923-2Suche in Google Scholar

9. Aliev, R. A., Ermolaev, S. V., Vasiliev, A. N., Ostapenko, V. S., Lapshina, E. V., Zhuikov, B. L., Zakharov, N. V., Pozdeev, V. V., Kokhanyuk, V. M., Myasoedov, B. F., Kalmykov, S. N.: Isolation of medicine-applicable actinium-225 from thorium targets irradiated by medium-energy protons, Solv. Extr. Ion Exch. 32(5), 468 (2014).10.1080/07366299.2014.896582Suche in Google Scholar

10. Zhuikov, B. L., Kalmykov, S. N., Aliev, R. A., Ermolaev, S. V., Kokhanyuk, V. M., Konyakhin, N. A., Tananaev, I. G., Myasoedov, B. F.: U.S. Patent No. 9,058,908. U.S. Patent and Trademark Office, Washington, DC (2015).Suche in Google Scholar

11. Weidner, J. W., Mashnik, S. G., John, K. D., Hemez, F., Ballard, B., Bach, H., Birnbaum, E. R., Bitteker, L. J., Couture, A., Dry, D., Fassbender, M. E., Gulley, M. S., Jackman, K. R., Ullmann, J. L., Wolfsberg, L. E., Nortier, F. M.: Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl. Radiat. Isot. 70(11), 2602 (2012).10.1016/j.apradiso.2012.07.006Suche in Google Scholar PubMed

12. Griswold, J. R., Medvedev, D. G., Engle, J. W., Copping, R., Fitzsimmons, J. M., Radchenko, V., Cooley, J. C., Fassbender, M. E., Denton, D. L., Murphy, K. E., Owens, A. C., Birnbaum, E. R., John, K. D., Nortier, F. M., Stracener, D. W., Heilbronn, L. H., Mausner, L. F., Mirzadeh, S.: Large scale accelerator production of 225Ac: effective cross sections for 78–192 MeV protons incident on 232Th targets. Appl. Radiat. Isot. 118, 366 (2016).10.1016/j.apradiso.2016.09.026Suche in Google Scholar PubMed

13. Hoehr, C., Bénard, F., Buckley, K., Crawford, J., Gottberg, A., Hanemaayer, V., Kunz, P., Ladouceur, K., Radchenko, V., Ramogida, C., Robertson, A., Ruth, T., Zacchia, N., Zeisler, S., Schaffer, P.: Medical isotope production at TRIUMF – from imaging to treatment. Phys. Procedia. 90, 200 (2017).10.1016/j.phpro.2017.09.059Suche in Google Scholar

14. Robertson, A. K., Lobbezoo, A., Moskven, L., Schaffer, P., Hoehr, C.: Design of a thorium metal target for 225Ac production at TRIUMF. Instruments 3(1), 18 (2019).10.3390/instruments3010018Suche in Google Scholar

15. Boll, R. A., Mirzadeh, S., Kennel, S. J., DePaoli, D. W., Webb, O. F.: 213Bi for alpha-particle-mediated radioimmunotherapy. J. Labelled Compd. Radiopharm. 40, 341 (1997).Suche in Google Scholar

16. Wu, C., Brechbiel, M. W., Gansow, O. A.: An improved generator for the production of 213Bi from 225Ac. Radiochim. Acta. 79(2), 141 (1997).10.1524/ract.1997.79.2.141Suche in Google Scholar

17. McDevitt, M. R., Finn, R. D., Sgouros, G., Ma, D., Scheinberg, D. A.: An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation. Appl. Radiat. Isot. 50(5), 895 (1999).10.1016/S0969-8043(98)00151-1Suche in Google Scholar PubMed

18. Bray, L. A., Tingey, J. M., DesChane, J. R., Egorov, O. B., Tenforde, T. S., Wilbur, D. S., Hamlin, D. K., Pathare, P. M.: Development of a unique bismuth (Bi-213) automated generator for use in cancer therapy. Ind. Eng. Chem. Res. 39(9), 3189 (2000).10.1021/ie990068rSuche in Google Scholar

19. McAlister, D. R., Horwitz, E. P.: Automated two column generator systems for medical radionuclides. Appl. Radiat. Isot. 67(11), 1985 (2009).10.1016/j.apradiso.2009.07.019Suche in Google Scholar PubMed

20. Guseva, L. I., Dogadkin, N. N.: Development of a tandem generator system 229Th/225Ac/213Bi for repeated production of short-lived α-emitting radionuclides. Radiochemistry 51(2), 169 (2009).10.1134/S1066362209020131Suche in Google Scholar

21. Morgenstern, A., Bruchertseifer, F., Apostolidis, C.: Bismuth-213 and actinium-225 generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr. Radiopharm. 5(3), 221 (2012).10.2174/1874471011205030221Suche in Google Scholar PubMed

22. Betenekov, N. D., Denisov, E. I., Vasiliev, A. N., Ermolaev, S. V., Zhuikov, B. L.: Perspectives for Ac-225/Bi-213 generator developing using hydroxide inorganic sorbents. Radiochemistry 61(2), 211 (2019).10.1134/S1066362219020140Suche in Google Scholar

23. Sharygin, L. M., Gonchar, V. F., Moiseev, V. E.: Sol–gel method for obtaining inorganic sorbents based on titanium, zirconium, and tin hydroxides. Ion Exchange and Ionometry 5, 9 (1986).Suche in Google Scholar

24. National Nuclear Data Center, Brookhaven National Laboratory, USA, available at: http://www.nndc.bnl.gov/nudat2/. Last accessed 12 March 2019.Suche in Google Scholar

25. Horwitz, E. P., Chiarizia, R., Dietz, M. L.: DIPEX: a new extraction chromatographic material for the separation and preconcentration of actinides from aqueous solution. React. Funct. Polym. 33(1), 25 (1997).10.1016/S1381-5148(97)00013-8Suche in Google Scholar

26. Stary, J.: The Solvent Extraction of Metal Chelates. MacMillan, London (1964).10.1016/B978-0-08-010821-6.50007-7Suche in Google Scholar

27. Spivakov, B. Y., Stoyanov, E. S., Gribov, L. A., Zolotov, Y. A.: Raman laser spectroscopic studies of bismuth(III) halide complexes in aqueous solutions. J. Inorg. Nucl. Chem. 41(4), 453 (1979).10.1016/0022-1902(79)80423-6Suche in Google Scholar

28. Aja, S. U., Wood, S. A., Williams-Jones, A. E.: The aqueous geochemistry of Zr and the solubility of some Zr-bearing minerals. Appl. Geochem. 10(6), 603 (1995).10.1016/0883-2927(95)00026-7Suche in Google Scholar

29. Olofsson, U., Allard, B., Andersson, K., Torstenfelt, B.: Formation and properties of radiocolloids in aqueous solution-a literature survey (No. PRAV--4-25). Programraadet foer Radioaktivt Avfall (1981).10.1557/PROC-6-191Suche in Google Scholar

30. Institute for Transuranium Elements, Annual Report. ISBN 978-92-79-05001-5 (2006).Suche in Google Scholar

31. Denisov, E. I., Betenekov, N. D.: Kinetics of 99Mо sorption onto a sorbent based on hydrated titanium dioxide. Radiochem. 58(6), 631 (2016).10.1134/S1066362216060102Suche in Google Scholar

32. Betenekov, N. D., Denisov, E. I., Nedobukh, T. A., Sharygin, L. M.: U.S. Patent No. 6,337,055. U.S. Patent and Trademark Office, Washington, DC (2002).Suche in Google Scholar

Received: 2019-03-13
Accepted: 2019-05-22
Published Online: 2019-06-22
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3137/html
Button zum nach oben scrollen