Startseite FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction

  • Shaban Abd-Allah Kandil und Ulrich W. Scherer EMAIL logo
Veröffentlicht/Copyright: 17. Mai 2019

Abstract

The high importance of zirconium-89 (T1/2 = 78.41 h) is related to its applications in medical imaging. It can be produced at low-energy cyclotrons by the reaction 89Y(p,n)89Zr. There exist several publications on its production at low and intermediate energies but there is discrepancy with simulated data. In this study we considered the experimental parameters for four different types of yttrium foil targets reported in literature. The experimental parameters considered were the target geometry, beam profile, and angle of the target relative to the beam during irradiation. The Monte-Carlo code FLUKA was used to calculate production yields. The resulting values obtained by FLUKA from pencil beam or spread energy beam were compared to the theoretical yields obtained from the excitation function and the experimental ones. The FLUKA prediction for 89Z-yield reached ≈50 MBq/μA · h which agrees to a high extent with experimental and theoretical yields reported for the different targets.


Corresponding author: Prof. Ulrich W. Scherer, Institute of Physical Chemistry and Radiochemistry, Hochschule Mannheim, Mannheim, Germany

Acknowledgements

One of the authors (S.A.K.) is grateful to the Government of the Arab Republic of Egypt for a research grant through the Central Department of Missions.

References

1. Qaim, S. M.: Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 99, 611 (2011).10.1524/ract.2011.1870Suche in Google Scholar

2. Qaim, S. M.: Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 44, 31 (2017).10.1016/j.nucmedbio.2016.08.016Suche in Google Scholar PubMed

3. Holland, J. P., Divilov, V., Bander, N. H., Smith-Jones, P. M., Larson, S. M., Lewis, J. S.: 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 51, 1293 (2010).10.2967/jnumed.110.076174Suche in Google Scholar PubMed

4. Heskamp, S., Raavé, R., Boerman, O., Rijpkema, M., Goncalves, V., Denat, F.: 89Zr-immuno-positron emission tomography in oncology: state-of-the-art 89Zr radiochemistry. Bioconjug. Chem. 28, 2211 (2017).10.1021/acs.bioconjchem.7b00325Suche in Google Scholar PubMed

5. Stangl, S., Tei, L., De Rose, F., Reder, S., Martinelli, J., Sievert, W., Shevtsov, M., Öllinger, R., Rad, R., Schwaiger, M., D’Alessandria, C., Multhoff, G.: Preclinical evaluation of the Hsp70 peptide tracer TPP-PEG24-DFO[89Zr] for tumor-specific PET/CT imaging. Cancer Res. 78, 6268 (2018).10.1158/0008-5472.CAN-18-0707Suche in Google Scholar PubMed

6. Wooten, A. L., Madrid, E., Schweitzer, G. D., Lawrence, L. A., Mebrahtu, E., Lewis, B. C., Lapi, S. E.: Routine production of 89Zr using an automated module. Appl. Sci. 3, 593 (2013).10.3390/app3030593Suche in Google Scholar

7. Severin, G. W., Engle, J. W., Nickles, R. J., Barnhart, T. E.: 89Zr Radiochemistry for PET. Med. Chem. 7, 389 (2011).10.2174/157340611796799186Suche in Google Scholar PubMed

8. Omara, H. M., Hassan, K. F., Kandil, S. A., Hegazy, F. E., Saleh, Z. A.: Proton induced reactions on 89Y with particular reference to the production of the medically interesting radionuclide 89Zr. Radiochim. Acta 97, 467 (2009).10.1524/ract.2009.1645Suche in Google Scholar

9. Khandaker, M. U., Kim, K., Lee, M. W., Kim, K. S., Kim, G., Otuka, N.: Investigations of 89Y(p, x), 86, 88, 89gZr, 86m+g, 87g, 87m, 88gY, 85gSr, and 84gRb nuclear processes up to 42 MeV. Nucl. Instrum. Methods Phys. Res. B 271, 72 (2012).10.1016/j.nimb.2011.11.009Suche in Google Scholar

10. Sadeghi, M., Kakavand, T., Taghilo, M.: Targetry of Y2O3 on a copper substrate for the non-carrier-added 89Zr production via 89Y(p, n)89Zr reaction. Kerntechnik 75, 298 (2010).10.3139/124.110087Suche in Google Scholar

11. Meijs, W. E., Herscheid, J. D. M., Haisma, H. J., Wijbrandts, R., Vanlangevelde, F., Vanleuffen, P. J., Mooy, R., Pinedo, H. M.: Production of highly pure no-carrier added Zr-89 for the labeling of antibodies with a positron emitter. Appl. Radiat. Isot. 45, 1143 (1994).10.1016/0969-8043(94)90029-9Suche in Google Scholar

12. Holland, J. P., Sheh, Y., Lewis, J. S.: Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol. 36, 729 (2009).10.1016/j.nucmedbio.2009.05.007Suche in Google Scholar PubMed

13. Zweit, J., Downey, S., Sharma, H. L.: Production of no-carrier-added zirconium-89 for positron emission tomography. Appl. Radiat. Isot. 42, 199 (1991).10.1016/0883-2889(91)90074-BSuche in Google Scholar

14. Kandil, S. A., Spahn, I., Scholten, B., Saleh, Z. A., Saad, S. M. M., Coenen, H. H., Qaim, S. M.: Excitation functions of (α, xn) reactions on natRb and natSr from threshold up to 26 MeV: possibility of production of 87Y, 88Y and 89Zr. Appl. Radiat. Isot. 65, 561 (2007).10.1016/j.apradiso.2006.12.007Suche in Google Scholar PubMed

15. Dabkowski, A. M., Probst, K., Marshall, C.: Cyclotron production for the radiometal Zirconium-89 with an IBA cyclone 18/9 and COSTIS solid target system (STS). AIP Conf. Proc. 1509, 108 (2012).10.1063/1.4773950Suche in Google Scholar

16. Sadeghi, M., Enferadi, M., Bakhtiari, M.: Accelerator production of the positron emitter zirconium-89. Ann. Nucl. Energy 41, 97 (2012).10.1016/j.anucene.2011.11.014Suche in Google Scholar

17. Infantino, A., Oehlke, E., Domiziano, D., Schaffer, P., Trinczek, M., Hoehr, C.: Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: simulations against experimental measurements. Nucl. Instrum. Methods Phys. Res. B 366, 117 (2016).10.1016/j.nimb.2015.10.067Suche in Google Scholar

18. Sharifian, M., Sadeghi, M., Alirezapour, B., Yarmohammadi, M., Ardaneh, K.: Modeling and experimental data of zirconium-89 production yield. Appl. Radiat. Isot. 130, 206 (2017).10.1016/j.apradiso.2017.09.044Suche in Google Scholar PubMed

19. Infantino, A., Cicoria, G., Pancaldi, D., Ciarmatori, A., Boschi, S., Fanti, S., Marengo, M., Mostacci, D.: Prediction of 89Zr production using the Monte Carlo code FLUKA. Appl. Radiat. Isot. 69, 1134 (2011).10.1016/j.apradiso.2010.11.027Suche in Google Scholar PubMed

20. Sharifian, M., Sadeghi, M., Alirezapour, B.: Utilization of GEANT to calculation of production yield for 89Zr by charged particles interaction on 89Y, natZr and natSr. Appl. Radiat. Isot. 127, 161 (2017).10.1016/j.apradiso.2017.06.005Suche in Google Scholar PubMed

21. Link, J., Krohn, K., O’Hara, M.: A simple thick target for production of 89Zr using an 11 MeV cyclotron. Appl. Radiat. Isot. 122, 211 (2017).10.1016/j.apradiso.2017.01.037Suche in Google Scholar PubMed PubMed Central

22. Siikanen, J.: (PhD thesis). Radionuclide Production with PET Cyclotrons, Applications and Preclinical Experiments, Medical Radiation Physics, Lund University, Sweden (2015).Suche in Google Scholar

23. Sadeghi, M., Jokar, N., Kakavand, T., Tenreiro, C.: Prediction of 67Ga production using the Monte Carlo Code MCNPX. Appl. Radiat. Isot. 77, 14 (2013).10.1016/j.apradiso.2013.02.001Suche in Google Scholar PubMed

24. Blessing, G., Qaim, S. M.: An improved internal Cu3As-alloy cyclotron target for the production of 75Br and 77Br and separation of the by-product 67Ga from the matrix activity. Int. J. Appl. Radiat. Isot. 35, 927 (1984).10.1016/0020-708X(84)90204-7Suche in Google Scholar

25. Qaim S. M.: Target development for medical radioisotope production at a cyclotron. Nucl. Instr. Meth. A 282, 289 (1989).10.1016/0168-9002(89)90155-1Suche in Google Scholar

26. Qaim, S. M.: Cyclotron production of medical radionuclides. In: A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, F. Rösch (Eds.), Handbook of Nuclear Chemistry, 2nd Ed., Springer Science (2011), p. 1904.10.1007/978-1-4419-0720-2_39Suche in Google Scholar

27. Koning, A. J., Rochman, D.: TENDL-2015: TALYS-based evaluated nuclear data library. http://www.talys.eu/tendl-2015/.Suche in Google Scholar

28. Zhao, W., Shen, Q., Hanlin, Lu, Yu, W.: Investigation of 89Y(p,n)89Zr, 89Y(p,2n)88Zr and 89Y(p,pn)88Y reactions up to 22 MeV. Chin. J. Nucl. Phys. 14, 7 (1992).Suche in Google Scholar

29. Satheesh, B., Musthafa, M. M., Singh, B. P., Prasad, R.: Nuclear isomers 90m,gZr, 89m,gZr, 89m gY and 85m,gSr formed by bombardment of 89Y with protons of energies from 4 to 40 MeV. Int. J. Mod. Phys. E 20, 2119 (2011).10.1142/S0218301311019702Suche in Google Scholar

30. Mustafa, M. G., West Jr, H. I., O’brien, H., Lanier, R. G., Benhamou, M., Tamura, T.: Measurements and a direct-reaction–plus–Hauser–Feshbach analysis of 89Y(p, n)89Zr, 89Y(p, 2n)88Zr, and 89Y(p,pn)88Y reactions up to 40 MeV. Phys. Rev. C 38, 1624 (1988).10.1103/PhysRevC.38.1624Suche in Google Scholar PubMed

31. Ziegler, J. F.: Interactions of ions with matter. http://www.srim.org/ (2013).Suche in Google Scholar

32. Ferrari, A., Sala, P. R., Fasso, A., Ranft, J.: FLUKA: a multi-particle transport code (Program version 2005). CERN-2005-010, SLAC-R-773, INFN-TC-05-11 (2005).10.2172/877507Suche in Google Scholar

33. Boehlen, T., Cerutti, F., Chin, M., Fassò, A., Ferrari, A., Ortega, P., Mairani, A., Sala, P., Smirnov, G., Vlachoudis, V.: The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211 (2014).10.1016/j.nds.2014.07.049Suche in Google Scholar

34. Vasilis Vlachoudis, http://www.fluka.org/flair.Suche in Google Scholar

35. Fassbender, M., Arzumanov, A., Jamriska, D. J., Lyssukhin, S. N., Trellue, H., Waters, L. S.: Proton beam simulation with MCNPX: gallium metal activation estimates below 30 MeV relevant to the bulk production of 68Ge and 65Zn. Nucl. Instrum. Methods Phys. Res. B 261, 742 (2007).10.1016/j.nimb.2007.03.099Suche in Google Scholar

36. Rostampour, M., Sadeghi, M., Aboudzadeh, M., Yousefi, K., Hamidi, S.: Investigation of the thermal performance of natCu target for 63Zn production. Appl. Radiat. Isot. 141, 1 (2018).10.1016/j.apradiso.2018.08.011Suche in Google Scholar PubMed

Received: 2018-11-14
Accepted: 2019-04-11
Published Online: 2019-05-17
Published in Print: 2019-11-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3081/html
Button zum nach oben scrollen