Abstract
The high importance of zirconium-89 (T1/2 = 78.41 h) is related to its applications in medical imaging. It can be produced at low-energy cyclotrons by the reaction 89Y(p,n)89Zr. There exist several publications on its production at low and intermediate energies but there is discrepancy with simulated data. In this study we considered the experimental parameters for four different types of yttrium foil targets reported in literature. The experimental parameters considered were the target geometry, beam profile, and angle of the target relative to the beam during irradiation. The Monte-Carlo code FLUKA was used to calculate production yields. The resulting values obtained by FLUKA from pencil beam or spread energy beam were compared to the theoretical yields obtained from the excitation function and the experimental ones. The FLUKA prediction for 89Z-yield reached ≈50 MBq/μA · h which agrees to a high extent with experimental and theoretical yields reported for the different targets.
Acknowledgements
One of the authors (S.A.K.) is grateful to the Government of the Arab Republic of Egypt for a research grant through the Central Department of Missions.
References
1. Qaim, S. M.: Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 99, 611 (2011).10.1524/ract.2011.1870Search in Google Scholar
2. Qaim, S. M.: Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 44, 31 (2017).10.1016/j.nucmedbio.2016.08.016Search in Google Scholar PubMed
3. Holland, J. P., Divilov, V., Bander, N. H., Smith-Jones, P. M., Larson, S. M., Lewis, J. S.: 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 51, 1293 (2010).10.2967/jnumed.110.076174Search in Google Scholar PubMed
4. Heskamp, S., Raavé, R., Boerman, O., Rijpkema, M., Goncalves, V., Denat, F.: 89Zr-immuno-positron emission tomography in oncology: state-of-the-art 89Zr radiochemistry. Bioconjug. Chem. 28, 2211 (2017).10.1021/acs.bioconjchem.7b00325Search in Google Scholar PubMed
5. Stangl, S., Tei, L., De Rose, F., Reder, S., Martinelli, J., Sievert, W., Shevtsov, M., Öllinger, R., Rad, R., Schwaiger, M., D’Alessandria, C., Multhoff, G.: Preclinical evaluation of the Hsp70 peptide tracer TPP-PEG24-DFO[89Zr] for tumor-specific PET/CT imaging. Cancer Res. 78, 6268 (2018).10.1158/0008-5472.CAN-18-0707Search in Google Scholar PubMed
6. Wooten, A. L., Madrid, E., Schweitzer, G. D., Lawrence, L. A., Mebrahtu, E., Lewis, B. C., Lapi, S. E.: Routine production of 89Zr using an automated module. Appl. Sci. 3, 593 (2013).10.3390/app3030593Search in Google Scholar
7. Severin, G. W., Engle, J. W., Nickles, R. J., Barnhart, T. E.: 89Zr Radiochemistry for PET. Med. Chem. 7, 389 (2011).10.2174/157340611796799186Search in Google Scholar PubMed
8. Omara, H. M., Hassan, K. F., Kandil, S. A., Hegazy, F. E., Saleh, Z. A.: Proton induced reactions on 89Y with particular reference to the production of the medically interesting radionuclide 89Zr. Radiochim. Acta 97, 467 (2009).10.1524/ract.2009.1645Search in Google Scholar
9. Khandaker, M. U., Kim, K., Lee, M. W., Kim, K. S., Kim, G., Otuka, N.: Investigations of 89Y(p, x), 86, 88, 89gZr, 86m+g, 87g, 87m, 88gY, 85gSr, and 84gRb nuclear processes up to 42 MeV. Nucl. Instrum. Methods Phys. Res. B 271, 72 (2012).10.1016/j.nimb.2011.11.009Search in Google Scholar
10. Sadeghi, M., Kakavand, T., Taghilo, M.: Targetry of Y2O3 on a copper substrate for the non-carrier-added 89Zr production via 89Y(p, n)89Zr reaction. Kerntechnik 75, 298 (2010).10.3139/124.110087Search in Google Scholar
11. Meijs, W. E., Herscheid, J. D. M., Haisma, H. J., Wijbrandts, R., Vanlangevelde, F., Vanleuffen, P. J., Mooy, R., Pinedo, H. M.: Production of highly pure no-carrier added Zr-89 for the labeling of antibodies with a positron emitter. Appl. Radiat. Isot. 45, 1143 (1994).10.1016/0969-8043(94)90029-9Search in Google Scholar
12. Holland, J. P., Sheh, Y., Lewis, J. S.: Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol. 36, 729 (2009).10.1016/j.nucmedbio.2009.05.007Search in Google Scholar PubMed
13. Zweit, J., Downey, S., Sharma, H. L.: Production of no-carrier-added zirconium-89 for positron emission tomography. Appl. Radiat. Isot. 42, 199 (1991).10.1016/0883-2889(91)90074-BSearch in Google Scholar
14. Kandil, S. A., Spahn, I., Scholten, B., Saleh, Z. A., Saad, S. M. M., Coenen, H. H., Qaim, S. M.: Excitation functions of (α, xn) reactions on natRb and natSr from threshold up to 26 MeV: possibility of production of 87Y, 88Y and 89Zr. Appl. Radiat. Isot. 65, 561 (2007).10.1016/j.apradiso.2006.12.007Search in Google Scholar PubMed
15. Dabkowski, A. M., Probst, K., Marshall, C.: Cyclotron production for the radiometal Zirconium-89 with an IBA cyclone 18/9 and COSTIS solid target system (STS). AIP Conf. Proc. 1509, 108 (2012).10.1063/1.4773950Search in Google Scholar
16. Sadeghi, M., Enferadi, M., Bakhtiari, M.: Accelerator production of the positron emitter zirconium-89. Ann. Nucl. Energy 41, 97 (2012).10.1016/j.anucene.2011.11.014Search in Google Scholar
17. Infantino, A., Oehlke, E., Domiziano, D., Schaffer, P., Trinczek, M., Hoehr, C.: Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: simulations against experimental measurements. Nucl. Instrum. Methods Phys. Res. B 366, 117 (2016).10.1016/j.nimb.2015.10.067Search in Google Scholar
18. Sharifian, M., Sadeghi, M., Alirezapour, B., Yarmohammadi, M., Ardaneh, K.: Modeling and experimental data of zirconium-89 production yield. Appl. Radiat. Isot. 130, 206 (2017).10.1016/j.apradiso.2017.09.044Search in Google Scholar PubMed
19. Infantino, A., Cicoria, G., Pancaldi, D., Ciarmatori, A., Boschi, S., Fanti, S., Marengo, M., Mostacci, D.: Prediction of 89Zr production using the Monte Carlo code FLUKA. Appl. Radiat. Isot. 69, 1134 (2011).10.1016/j.apradiso.2010.11.027Search in Google Scholar PubMed
20. Sharifian, M., Sadeghi, M., Alirezapour, B.: Utilization of GEANT to calculation of production yield for 89Zr by charged particles interaction on 89Y, natZr and natSr. Appl. Radiat. Isot. 127, 161 (2017).10.1016/j.apradiso.2017.06.005Search in Google Scholar PubMed
21. Link, J., Krohn, K., O’Hara, M.: A simple thick target for production of 89Zr using an 11 MeV cyclotron. Appl. Radiat. Isot. 122, 211 (2017).10.1016/j.apradiso.2017.01.037Search in Google Scholar PubMed PubMed Central
22. Siikanen, J.: (PhD thesis). Radionuclide Production with PET Cyclotrons, Applications and Preclinical Experiments, Medical Radiation Physics, Lund University, Sweden (2015).Search in Google Scholar
23. Sadeghi, M., Jokar, N., Kakavand, T., Tenreiro, C.: Prediction of 67Ga production using the Monte Carlo Code MCNPX. Appl. Radiat. Isot. 77, 14 (2013).10.1016/j.apradiso.2013.02.001Search in Google Scholar PubMed
24. Blessing, G., Qaim, S. M.: An improved internal Cu3As-alloy cyclotron target for the production of 75Br and 77Br and separation of the by-product 67Ga from the matrix activity. Int. J. Appl. Radiat. Isot. 35, 927 (1984).10.1016/0020-708X(84)90204-7Search in Google Scholar
25. Qaim S. M.: Target development for medical radioisotope production at a cyclotron. Nucl. Instr. Meth. A 282, 289 (1989).10.1016/0168-9002(89)90155-1Search in Google Scholar
26. Qaim, S. M.: Cyclotron production of medical radionuclides. In: A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, F. Rösch (Eds.), Handbook of Nuclear Chemistry, 2nd Ed., Springer Science (2011), p. 1904.10.1007/978-1-4419-0720-2_39Search in Google Scholar
27. Koning, A. J., Rochman, D.: TENDL-2015: TALYS-based evaluated nuclear data library. http://www.talys.eu/tendl-2015/.Search in Google Scholar
28. Zhao, W., Shen, Q., Hanlin, Lu, Yu, W.: Investigation of 89Y(p,n)89Zr, 89Y(p,2n)88Zr and 89Y(p,pn)88Y reactions up to 22 MeV. Chin. J. Nucl. Phys. 14, 7 (1992).Search in Google Scholar
29. Satheesh, B., Musthafa, M. M., Singh, B. P., Prasad, R.: Nuclear isomers 90m,gZr, 89m,gZr, 89m gY and 85m,gSr formed by bombardment of 89Y with protons of energies from 4 to 40 MeV. Int. J. Mod. Phys. E 20, 2119 (2011).10.1142/S0218301311019702Search in Google Scholar
30. Mustafa, M. G., West Jr, H. I., O’brien, H., Lanier, R. G., Benhamou, M., Tamura, T.: Measurements and a direct-reaction–plus–Hauser–Feshbach analysis of 89Y(p, n)89Zr, 89Y(p, 2n)88Zr, and 89Y(p,pn)88Y reactions up to 40 MeV. Phys. Rev. C 38, 1624 (1988).10.1103/PhysRevC.38.1624Search in Google Scholar PubMed
31. Ziegler, J. F.: Interactions of ions with matter. http://www.srim.org/ (2013).Search in Google Scholar
32. Ferrari, A., Sala, P. R., Fasso, A., Ranft, J.: FLUKA: a multi-particle transport code (Program version 2005). CERN-2005-010, SLAC-R-773, INFN-TC-05-11 (2005).10.2172/877507Search in Google Scholar
33. Boehlen, T., Cerutti, F., Chin, M., Fassò, A., Ferrari, A., Ortega, P., Mairani, A., Sala, P., Smirnov, G., Vlachoudis, V.: The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211 (2014).10.1016/j.nds.2014.07.049Search in Google Scholar
34. Vasilis Vlachoudis, http://www.fluka.org/flair.Search in Google Scholar
35. Fassbender, M., Arzumanov, A., Jamriska, D. J., Lyssukhin, S. N., Trellue, H., Waters, L. S.: Proton beam simulation with MCNPX: gallium metal activation estimates below 30 MeV relevant to the bulk production of 68Ge and 65Zn. Nucl. Instrum. Methods Phys. Res. B 261, 742 (2007).10.1016/j.nimb.2007.03.099Search in Google Scholar
36. Rostampour, M., Sadeghi, M., Aboudzadeh, M., Yousefi, K., Hamidi, S.: Investigation of the thermal performance of natCu target for 63Zn production. Appl. Radiat. Isot. 141, 1 (2018).10.1016/j.apradiso.2018.08.011Search in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dependence of UO2 surface morphology on processing history within a single synthetic route
- Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
- Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media
- Leaching of 137Cs from Chernobyl fuel debris: corium and “lava”
- Retention behavior of anionic radionuclides using metal hydroxide sludge
- Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates
- 99mTc(I) carbonyl-radiolabeled lipid based drug carriers for temozolomide delivery and bioevaluation by in vitro and in vivo
- FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction
- Rapid Communication
- 225Ac/213Bi generator based on inorganic sorbents
Articles in the same Issue
- Frontmatter
- Dependence of UO2 surface morphology on processing history within a single synthetic route
- Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
- Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media
- Leaching of 137Cs from Chernobyl fuel debris: corium and “lava”
- Retention behavior of anionic radionuclides using metal hydroxide sludge
- Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates
- 99mTc(I) carbonyl-radiolabeled lipid based drug carriers for temozolomide delivery and bioevaluation by in vitro and in vivo
- FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction
- Rapid Communication
- 225Ac/213Bi generator based on inorganic sorbents