Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
-
Veeraragavan Vijayakumar
, Chidambaram Ramesh Kumar, Nagarajan Sivaraman
, Ammath Suresh , Avinash S. Kanekar , Arunasis Bhattacharyya and Prasanta K. Mohapatra
Abstract
The extraction behaviour of U(VI), Th(IV) and Nd(III) was investigated as a function of nitric acid concentration for diamide based extractants, namely, N,N,N′,N′-tetraoctyl-3-carbonylpentanediamide (TOCPDA) and 4-carbonyl-heptanedioic acid bis-dioctylamide (CHADA). In addition, the distribution ratio was also measured for Pu(IV) and Sr(II) with 1.1 M CHADA in n-dodecane. These extractants were synthesized by adopting simple acid, amine coupling reaction with DCC (dicyclohexylcarbodiimide) and DMAP (N,N′-dimethylaminopyridine) as the coupling agent. The newly synthesized extractants were characterized by FT-IR, NMR, Mass, CHNS and HPLC. The extraction results indicated that CHADA shown has better extraction behavior for U(VI) compared to TOCPDA. In addition, CHADA coated HPLC column was examined for the retention behaviour of U(VI), Th(IV), and Nd(III). Computation studies based on density functional theory (DFT) were carried out to understand the complexing behaviour of U(VI), Pu(IV) and Sr(II) with CHADMA and TMCPDA.
Funding source: VV and CRK thank UGC-DAE consortium for scientific research
Award Identifier / Grant number: CSR-KN/CRS-67/2014-15
Funding statement: VV and CRK thank UGC-DAE consortium for scientific research (Funder Id: http://dx.doi.org/10.13039/501100010426, CSR-KN/CRS-67/2014-15), India, for providing research fund and are grateful to the management of Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology for their infrastructure support to our laboratory.
References
1. Antony, M. P., Venkatesan, K. A., Suneesh, A. S., Nagarajan, K., Vasudeva Rao, P. R.: Separation of trivalent actinides from high-active waste. Proc. Chem. 7, 130 (2012).10.1016/j.proche.2012.10.023Search in Google Scholar
2. Moffat, A. J., Thomson, R. D.: The chemical stability of tributyl phosphate in some nitrate and chloride systems. J. Inorg. Nucl. Chem. 16, 365 (1961).10.1016/0022-1902(61)80516-2Search in Google Scholar
3. Siddall, H. T.: Effects of structure of N, N′-disubstituted amides on their extraction of actinide and zirconium nitrates and of nitric acid. J. Phys. Chem. 64(12), 1863 (1960).10.1021/j100841a014Search in Google Scholar
4. Manchanda, V. K., Pathak, P. N.: Amides and diamides as promising extractant in the back end of the nuclear fuel cycle. Sep. Puri. Technol. 35, 85 (2004).10.1016/j.seppur.2003.09.005Search in Google Scholar
5. Gasparini, G. M., Grossi, G.: Application of N, N-dialkyl aliphatic amides in the separation of some actinides. Sep. Sci. Technol. 15(4), 825 (1980).10.1080/01496398008076273Search in Google Scholar
6. Musikas, C.: Potentiality of non-organophosphorus extractant in chemical separations of actinide. Sep. Sci. Technol. 23(12), 1211 (1988).10.1080/01496398808075626Search in Google Scholar
7. Gasparini, G. M., Grossi, G.: Review article long chain disubstituted aliphatic amides as extracting agents in industrial applications of solvent extraction. Solvent Extr. Ion Exch. 4(6), 1233 (1986).10.1080/07366298608917921Search in Google Scholar
8. Medic, C., Hudson, M. J., Liljenzin, J. O., Glatz, J.-P., Nannicini, R., Facchini, A., Kolarik, Z., Odoj, Z. R.: New Partitioning Techniques for Minor Actinides, EUR 19149, European Commission, Luxembourg (2000).Search in Google Scholar
9. Ansari, S. A., Pathak, P., Mohapatra, P. K., Manchanda, V. K.: Aqueous partitioning of minor actinides by different processes. Sep. Purif. Rev. 40(1), 43 (2011).10.1080/15422119.2010.545466Search in Google Scholar
10. Mathur, J. N., Murali, M. S., Nash, K. L.: Actinide partitioning: a review. Solvent Extr. Ion Exch. 19, 357 (2001).10.1081/SEI-100103276Search in Google Scholar
11. Schulz, W. W., Horwitz, E. P.: The truex process and the management of liquid truex U waste. Sep. Sci. Technol. 23, 1191 (1988).10.1080/01496398808075625Search in Google Scholar
12. Horwitz, E. P., Kalina, D. G., Diamond, H., Vandegrift, G. F., Schulz, W. W.: The TRUEX process: a process for the extraction of the transuranic elements from nitric acid wastes utilizing modified purex solvent. Solvent Extr. Ion Exch. 3(1&2), 75 (1985).10.1080/07366298508918504Search in Google Scholar
13. Turanov, A. N., Karandashev, V. K., Sharova, E. V., Genklna, G. K., Artyushln, O. L., Balmukhanova, A.: Effect of ionic liqid on the extraction of actinides and lanthanides with 1,2,3-triazole-modified carbamoylmethylphosphine oxide from nitric acid solutions. Radiochim. Acta. 106(5), 1 (2017).10.1515/ract-2017-2851Search in Google Scholar
14. Musikas, C., Hubert, H.: Extraction by N,N′-tetraalkylmalonamides II. Solvent Extr. Ion Exch. 5(5), 877 (1987).10.1080/07366298708918598Search in Google Scholar
15. Cuillerdier, C., Musikas, C., Hoel, P., Nigond, L., Vitart, X.: Malonamides as new extractants for nuclear waste solutions. Sep. Sci. Technol. 26(9), 1229 (1991).10.1080/01496399108050526Search in Google Scholar
16. Courson, O., Lebrun, M., Malmbeck, R., Pagliosa, G., Römer, K., Sätmark, B., Glatz, J.-P.: Partitioning of minor actinides from HLLW using the DIAMEX process. Pt. 1. Demonstration of extraction performances and hydraulic behaviour of the solvent in a Continuous process. Radiochim. Acta. 88(12), 857 (2000).10.1524/ract.2000.88.12.857Search in Google Scholar
17. Nair, G. M., Prabhu, D. R., Mahajan, G. R., Shukla, J. P.: Tetra-butyl-malonamide and tetra-isobutyl malonamide as extractants for uranium(VI) and plutonium(IV). Solvent Extr. Ion Exch. 11, 831 (1993).10.1080/07366299308918189Search in Google Scholar
18. Patil, A. B., Shinde, V. S., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K.: Modified synthesis scheme for N,N´-dimethyl-N,N´-dioctyl-2,(2´-hexyloxyethyl) malonamide (DMDOHEMA) and its comparison with proposed solvents for actinide partitioning. Radiochim Acta. 101, 93 (2013).10.1524/ract.2013.1998Search in Google Scholar
19. Prathibha, T., Kumaresan, R., Robert Selvan, B., Venkatesan, K. A., Antony, M. P., Vasudeva Rao, P. R.: N,N′-dialkyl-2-hydroxyacetamides for modifier-free separation of trivalent actinides from nitric acid medium. Radiochim Acta. 104(3), 173 (2015).10.1515/ract-2015-2477Search in Google Scholar
20. Sasaki, S., Sugo, Y., Suzuki, S., Tachimori, S.: The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3n-dodecane system. Solvent Extr. Ion Exch. 19, 91 (2001).10.1081/SEI-100001376Search in Google Scholar
21. Ansari, S. A., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K.: Chemistry of Diglycolamides: Promising Extractants for Actinide Partitioning. Chem. Rev. 112, 1751 (2012).10.1021/cr200002fSearch in Google Scholar PubMed
22. Wilden, A., Modolo, G., Lange, S., Sadowski, F., Beele, B. B., Skerencak-Frech, A., Panak, P. J., Iqbal, M., Verboom, W., Geist. A., Bosbach, D.: Modified diglycolamides for the An(III) + Ln(III) co-separation: evaluation by solvent extraction and time-resolved laser fluorescence spectroscopy. Solvent Extr. Ion Exch. 32, 119 (2014).10.1080/07366299.2013.833791Search in Google Scholar
23. Iqbal, M., Huskens, J., Verboom, W., Sypula, M., Modolo, G.: Synthesis and Am/Eu extraction of novel TODGA derivatives. Supramol. Chem. 22, 827 (2010).10.1080/10610278.2010.506553Search in Google Scholar
24. Leoncini, A., Huskens, J., Verboom, W.: Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 46, 7229 (2017).10.1039/C7CS00574ASearch in Google Scholar PubMed
25. Dutta, S., Raut, D. R., Mohapatra, P. K.: Role of diluent on the separation of 90Y from 90Sr by solvent extraction and supported liquid membrane using T2EHDGA as the extractant. Appl. Radiant. Isotope. 70, 670 (2012).10.1016/j.apradiso.2011.11.064Search in Google Scholar
26. Pereze-Bustamate, T. S., Palomares Delgado, F.: The extraction and spectrophotometric determination of sexavalent uranium with arsenazo III in aqueous-organic media. Analyst 96, 407 (1971).10.1039/an9719600407Search in Google Scholar
27. Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Electronic structure calculations on Work station computers: The program system turbomole. Chem. Phys. Lett. 162, 165 (1989).10.1016/0009-2614(89)85118-8Search in Google Scholar
28. Treutler, O., Ahlrichs, R.: Efficient molecular numerical integration schemes. J. Chem. Phys. 102, 346 (1995).10.1063/1.469408Search in Google Scholar
29. TURBOMOLE V6.6 a development of the University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989−2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.Search in Google Scholar
30. Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic Behavior. Phys. Rev. A. 38, 3098 (1988).10.1103/PhysRevA.38.3098Search in Google Scholar
31. Perdew, J. P.: Density-functional approximation for the correlation energy of the in homogeneous electron gas. Phys. Rev. B. 33, 8822 (1986).10.1103/PhysRevB.33.8822Search in Google Scholar PubMed
32. Sasaki, Y.: Tachimori, S.: Extraction of actinides (III), (IV), (V), (VI), and lanthanides (III) by structurally tailored diamides. Solvent Extr. Ion Exch. 20(1), 21 (2002).10.1081/SEI-100108822Search in Google Scholar
33. Jensen, M. P., Yaita, T., Chiarizia, R.: Reverse-micelle formation in the partitioning of trivalent f-element cations by biphasic systems containing a tetraalkyldiglycolamide. Langmuir 23(9), 4765 (2007).10.1021/la0631926Search in Google Scholar PubMed
34. Sengupta, A., Bhattacharyya, A., Verboom, W., Ali, S. M., Mohapatra, P. K.: Insight into the complexation of actinides and lanthanides with diglycolamide derivatives: experimental and density functional theoretical studies. J. Phys. Chem. B. 121, 2640 (2017).10.1021/acs.jpcb.6b11222Search in Google Scholar PubMed
35. Narbutt, J., Wodyński A., Pecul, M.: The selectivity of diglycolamide (TODGA) and bis-triazine-bipyridine (BTBP) ligands in actinide/lanthanide complexation and solvent extraction separation-a theoretical approach. Dalton Trans. 44, 2657 (2015).10.1039/C4DT02657HSearch in Google Scholar
36. Bhattacharyya, A., Leoncini, A., Egberink, R. J. M., Mohapatra, P. K., Verma, P. K., Kanekar, A. S., Yadav, A. K., Jha, S. N.; Bhattacharyya, D., Huskens, J., Verboom, W.: First report on the complexation of actinides and lanthanides using 2,2′,2′′-(((1,4,7-Triazonane-1,4,7- triyl)tris(2-oxoethane-2,1-diyl)) tris(oxy)) tris(N, N-dioctylacetamide): synthesis, extraction, luminescence, EXAFS, and DFT studies. Inorg. Chem. 57(20), 12987 (2018).10.1039/C6DT02930BSearch in Google Scholar
37. Kou, F., Yang, S., Qian, H., Zhang, L., Beavers, C. M., Teat S. J., Tian, G.: A fluorescence study on the complexation of Sm(III), Eu(III) and Tb(III) with Tetraalkyldiglycolamides (TRDGA) in aqueous solution, in solid state, and in solvent extraction. Dalton Trans. 45, 18484 (2016).10.1021/acs.jpca.5b06370Search in Google Scholar PubMed
38. Lan, J.-H., Wang, C.-Z., Wu, Q.-Y., Wang, S.-A., Feng, Y.-X., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q.: A quasi-relativistic density functional theory study of the actinyl(VI, V) (An=U, Np, Pu) complexes with a six-membered macrocycle containing pyrrole, pyridine, and furan subunits. J. Phy. Chem. A. 119(34), 9178 (2015).10.1021/acs.jpca.5b06370Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2019-3102).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dependence of UO2 surface morphology on processing history within a single synthetic route
- Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
- Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media
- Leaching of 137Cs from Chernobyl fuel debris: corium and “lava”
- Retention behavior of anionic radionuclides using metal hydroxide sludge
- Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates
- 99mTc(I) carbonyl-radiolabeled lipid based drug carriers for temozolomide delivery and bioevaluation by in vitro and in vivo
- FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction
- Rapid Communication
- 225Ac/213Bi generator based on inorganic sorbents
Articles in the same Issue
- Frontmatter
- Dependence of UO2 surface morphology on processing history within a single synthetic route
- Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies
- Synthesis of porous resorcinol-formaldehyde resins and study of their sorption characteristics toward Cs in highly mineralized alkaline media
- Leaching of 137Cs from Chernobyl fuel debris: corium and “lava”
- Retention behavior of anionic radionuclides using metal hydroxide sludge
- Synthesis, thermogravimetric analysis and enthalpy determination of lanthanide β-diketonates
- 99mTc(I) carbonyl-radiolabeled lipid based drug carriers for temozolomide delivery and bioevaluation by in vitro and in vivo
- FLUKA simulation yields in a comparison with theoretical and experimental yields relevant to 89Zr produced in the 89Y(p,n) reaction
- Rapid Communication
- 225Ac/213Bi generator based on inorganic sorbents