Startseite Naturwissenschaften 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications

  • Yousef Fazaeli EMAIL logo , Mohammad Amin Hosseini , Mohammadreza Afrasyabi und Parviz Ashtari
Veröffentlicht/Copyright: 29. September 2018

Abstract

Silica nanoparticles (SNPs) are known as intrinsic radiolabeling agents and offer a fast and reliable approach to deliver theranostic agents into targeted organs. Radiolabeled amorphous silica nanoparticles are of great interest to radiation oncology communities. In order to improve the performance of these nano materials in cancer diagnosis and treatment, their inherent properties, such as surface area and the ability to accumulate in cancer cells, should be enhanced. Pyridine functionalized mesoporous silica MCM-41 is known as a potential anticancer-drug delivery system with high suface area. In thiswork, in order to produce an image-guided drug delivery system for diagnostic applications, [68Ga] radionuclide was grafted on pyridine functionalized MCM-41. The nanoparticles were assessed with atomic force microscopy (AFM), paper chromatography, X-ray diffraction, FTIR spectroscopy, CHN and TGA/DTA analyses. The pharmacokinetic profile evaluation of the radiolabeled nano silica, [68Ga]-Py-Butyl@MCM-41, was done in Fibrosarcoma tumor-bearing mice. This labeled nanocomposite with appropriate blood circulation in body, high structural stability, high tumor/blood ID/g% ratio and fast excretion from the body can be proposed as an efficient nano engineered composite for upcoming tumor targeting/imaging nanotechnology-based applications.

References

1. Mrówczyński, R.: Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 10, 7541 (2018).10.1021/acsami.7b08392Suche in Google Scholar PubMed

2. Fazaeli, Y., Gholibeikian, M.: Synthesis and biological evaluation of the toxicity of grafted 2-mercaptobenzimidazole multi-walled carbon nanotubes (MWCNTs). Iran. J. Sci. Technol. 41, 145 (2017).10.1007/s40995-017-0197-xSuche in Google Scholar

3. Björnmalm, M., Thurecht, K. J., Michael, M., Scott, A. M., Caruso, F.: Bridging bio–nano science and cancer nanomedicine. ACS Nano 11, 9594 (2017).10.1021/acsnano.7b04855Suche in Google Scholar PubMed

4. Cassano, D., Pocoví-Martínez, S., Voliani, V.: Ultrasmall-in-nano approach: enabling the translation of metal nanomaterials to clinics. Bioconjug. Chem. 29, 4 (2018).10.1021/acs.bioconjchem.7b00664Suche in Google Scholar PubMed

5. Kwon, B., Han, E., Yang, W., Cho, W., Yoo, W., Hwang, J., Kwon, B.-M., Lee, D.: Nano-fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents. ACS Appl. Mater. Interfaces 8, 5887 (2016).10.1021/acsami.5b12523Suche in Google Scholar PubMed

6. Fazaeli, Y., Akhavan, O., Rahighi, R., Aboudzadeh, M. R., Karimi, E., Afarideh, H.: In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 45, 196 (2014).10.1016/j.msec.2014.09.019Suche in Google Scholar PubMed

7. Fazaeli, Y., Amini, M. M., Ashourion, H., Heydari, H., Majdabadi, A., Jalilian, A. R., Abolmaali, S.: Grafting of a novel gold(III) complex on nanoporous MCM-41 and evaluation of its toxicity in Saccharomyces cerevisiae. Int. J. Nanomedicine 6, 3251 (2011).10.2147/IJN.S25449Suche in Google Scholar PubMed PubMed Central

8. Fazaeli, Y., Feizi, S., Jalilian, A. R., Hejrani, A.: Grafting of [64Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl. Radiat. Isot. 112, 13 (2016).10.1016/j.apradiso.2016.03.003Suche in Google Scholar PubMed

9. Fazaeli, Y., Asgari, Z.: DTPA-functionalized nano-porous MCM-41 silica: a new potential nanoengineered labeled composite for diagnostic applications. Iran. J. Sci. Technol. 42, 497 (2018).10.1007/s40995-016-0047-2Suche in Google Scholar

10. González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., Lozoya-Agulló, I., Bermejo, M., Martínez-Máñez, R., Sancenón, F.: Gated mesoporous silica nanocarriers for a “two-step” targeted system to colonic tissue. Mol. Pharm. 14, 4442 (2017).10.1021/acs.molpharmaceut.7b00565Suche in Google Scholar PubMed

11. Chakraborty, I., Carrington, S. J., Hauser, J., Oliver, S. R. J., Mascharak, P. K.: Rapid eradication of human breast cancer cells through trackable light-triggered CO delivery by mesoporous silica nanoparticles packed with a designed photoCORM. Chem. Mater. 27, 8387 (2015).10.1021/acs.chemmater.5b03859Suche in Google Scholar

12. Wang, J., Wang, Y., Liu, Q., Yang, L., Zhu, R., Yu, C., Wang, S.: Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl. Mater. Interfaces 8, 26511 (2016).10.1021/acsami.6b08400Suche in Google Scholar PubMed

13. Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., Martínez-Máñez, R., Marcos, M. D., Amorós, P.: Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. Langmuir 31, 3753 (2015).10.1021/acs.langmuir.5b00139Suche in Google Scholar PubMed

14. Argyo, C., Weiss, V., Bräuchle, C., Bein, T.: Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 26, 435 (2014).10.1021/cm402592tSuche in Google Scholar

15. Wang, Y., Wang, K., Zhang, R., Liu, X., Yan, X., Wang, J., Wagner, E., Huang, R.: Synthesis of core–shell graphitic carbon@silica nanospheres with dual-ordered mesopores for cancer-targeted photothermochemotherapy. ACS Nano 8, 7870 (2014).10.1021/nn5027214Suche in Google Scholar PubMed

16. Huang, Y.-K., Su, C.-H., Chen, J.-J., Chang, C.-T., Tsai, Y.-H., Syu, S.-F., Tseng, T.-T., Yeh, C.-S.: Fabrication of silica-coated hollow carbon nanospheres encapsulating Fe3O4 cluster for magnetical and MR imaging guided NIR light triggering hyperthermia and ultrasound imaging. ACS Appl. Mater. Interfaces 8, 14470 (2016).10.1021/acsami.6b04759Suche in Google Scholar PubMed

17. Mohapatra, S., Rout, S. R., Das, R. K., Nayak, S., Ghosh, S. K.: Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 32, 1611 (2016).10.1021/acs.langmuir.5b03898Suche in Google Scholar PubMed

18. Szegedi, A., Popova, M., Goshev, I., Mihály, J.: Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J. Solid State Chem. 184, 1201 (2011).10.1016/j.jssc.2011.03.005Suche in Google Scholar

19. Popova, M., Szegedi, A., Yoncheva, K., Konstantinov, S., Petrova, G. P., Aleksandrov, H. A., Vayssilov, G. N., Shestakova, P.: New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. Microporous Mesoporous Mater. 198, 247 (2014).10.1016/j.micromeso.2014.07.044Suche in Google Scholar

20. Mebert, A. M., Baglole, C. J., Desimone, M. F., Maysinger, D.: Nanoengineered silica: properties, applications and toxicity. Food Chem. Toxicol. 109, 753 (2017).10.1016/j.fct.2017.05.054Suche in Google Scholar PubMed

21. Zhang, Y., Ang, C. Y., Li, M., Tan, S. Y., Qu, Q., Luo, Z., Zhao, Y.: Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7, 18179 (2015).10.1021/acsami.5b05893Suche in Google Scholar PubMed

22. Carmona, F. J., Jiménez-Amezcua, I., Rojas, S., Romão, C. C., Navarro, J. A. R., Maldonado, C. R., Barea, E.: Aluminum doped MCM-41 nanoparticles as platforms for the dual encapsulation of a CO-releasing molecule and cisplatin. Inorg. Chem. 56, 10474 (2017).10.1021/acs.inorgchem.7b01475Suche in Google Scholar PubMed

23. Slowing, I., Trewyn, B. G., Lin, V. S. Y.: Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 128, 14792 (2006).10.1021/ja0645943Suche in Google Scholar PubMed

24. Chen, F., Goel, S., Valdovinos, H. F., Luo, H., Hernandez, R., Barnhart, T. E., Cai, W.: In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9, 7950 (2015).10.1021/acsnano.5b00526Suche in Google Scholar PubMed PubMed Central

25. Goel, S., Chen, F., Hong, H., Valdovinos, H. F., Hernandez, R., Shi, S., Barnhart, T. E., Cai, W.: VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl. Mater. Interfaces 6, 21677 (2014).10.1021/am506849pSuche in Google Scholar PubMed PubMed Central

26. Chen, F., Hong, H., Zhang, Y., Valdovinos, H. F., Shi, S., Kwon, G. S., Theuer, C. P., Barnhart, T. E., Cai, W.: In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7, 9027 (2013).10.1021/nn403617jSuche in Google Scholar PubMed PubMed Central

27. Ellison, P. A., Chen, F., Goel, S., Barnhart, T. E., Nickles, R. J., DeJesus, O. T., Cai, W.: Intrinsic and stable conjugation of thiolated mesoporous silica nanoparticles with radioarsenic. ACS Appl. Mater. Interfaces 9, 6772 (2017).10.1021/acsami.6b14049Suche in Google Scholar PubMed PubMed Central

28. Migliari, S., Sammartano, A., Scarlattei, M., Serreli, G., Ghetti, C., Cidda, C., Baldari, G., Ortenzia, O., Ruffini, L.: Development and validation of a high-pressure liquid chromatography method for the determination of chemical purity and radiochemical purity of a [68Ga]-labeled glu-urea-lys(Ahx)-HBED-CC (positron emission tomography) tracer. ACS Omega 2, 7120 (2017).10.1021/acsomega.7b00677Suche in Google Scholar PubMed PubMed Central

29. Ghosh, S. C., Hernandez Vargas, S., Rodriguez, M., Kossatz, S., Voss, J., Carmon, K. S., Reiner, T., Schonbrunn, A., Azhdarinia, A.: Synthesis of a fluorescently labeled 68Ga-DOTA-TOC analog for somatostatin receptor targeting. ACS Med. Chem. Lett. 8, 720 (2017).10.1021/acsmedchemlett.7b00125Suche in Google Scholar PubMed PubMed Central

30. Fuchigami, T., Ono, H., Oyadomari, K., Iwatake, M., Hayasaka, D., Akbari, M., Yui, K., Nishi, K., Kudo, T., Yoshida, S., Haratake, M., Nakayama, M.: Development of a 68Ge/68Ga generator system using polysaccharide polymers and its application in PET imaging of tropical infectious diseases. ACS Omega 2, 1400 (2017).10.1021/acsomega.7b00147Suche in Google Scholar PubMed PubMed Central

31. Kuo, H.-T., Pan, J., Lau, J., Zhang, C., Zeisler, J., Colpo, N., Bénard, F., Lin, K.-S.: Radiolabeled R954 derivatives for imaging bradykinin B1 receptor expression with positron emission tomography. Mol. Pharm. 14, 821 (2017).10.1021/acs.molpharmaceut.6b01055Suche in Google Scholar PubMed

32. Poty, S., Gourni, E., Désogère, P., Boschetti, F., Goze, C., Maecke, H. R., Denat, F.: AMD3100: a versatile platform for CXCR4 targeting 68Ga-based radiopharmaceuticals. Bioconjug. Chem. 27, 752 (2016).10.1021/acs.bioconjchem.5b00689Suche in Google Scholar PubMed

33. Li, D., Zhao, X., Zhang, L., Li, F., Ji, N., Gao, Z., Wang, J., Kang, P., Liu, Z., Shi, J., Chen, X., Zhu, Z.: 68Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study. Mol. Pharm. 11, 3923 (2014).10.1021/mp5003224Suche in Google Scholar PubMed PubMed Central

34. Maschauer, S., Einsiedel, J., Hübner, H., Gmeiner, P., Prante, O.: 18F- and 68Ga-labeled neurotensin peptides for PET imaging of neurotensin receptor 1. J. Med. Chem. 59, 6480 (2016).10.1021/acs.jmedchem.6b00675Suche in Google Scholar PubMed

35. Morfin, J.-F., Tóth, É.: Kinetics of Ga(NOTA) formation from weak Ga-citrate complexes. Inorg. Chem. 50, 10371 (2011).10.1021/ic201445eSuche in Google Scholar PubMed

36. Fazaeli, Y., Jalilian, A. R., Amini, M. M., Ardaneh, K., Rahiminejad, A., Bolourinovin, F., Moradkhani, S., Majdabadi, A.: Development of a 68Ga-fluorinated porphyrin complex as a possible PET imaging agent. Nucl. Med. Mol. Imaging 46, 20 (2012).10.1007/s13139-011-0109-5Suche in Google Scholar PubMed PubMed Central

37. Fazaeli, Y., Rahighi, R., Tayyebi, A., Feizi, S.: Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging. Radiochimica Acta. 105, 65 (2017).10.1515/ract-2015-2556Suche in Google Scholar

38. Fazaeli, Y., Zare, H., Karimi, S., Rahighi, R., Feizi, S.: Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl. Phys. A 123, 507 (2017).10.1007/s00339-017-1125-9Suche in Google Scholar

39. Shaffer, T. M., Wall, M. A., Harmsen, S., Longo, V. A., Drain, C. M., Kircher, M. F., Grimm, J.: Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett. 15, 864 (2015).10.1021/nl503522ySuche in Google Scholar PubMed PubMed Central

40. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 (1992).10.1021/ja00053a020Suche in Google Scholar

41. Fazaeli, Y., Amini, M. M., Mohajerani, E., Sharbatdaran, M., Torabi, N.: Grafting aluminum(III) 8-hydroxyquinoline derivatives on MCM-41 mesoporous silica for tuning of the light emitting color. J. Colloid Interface Sci. 346, 384 (2010).10.1016/j.jcis.2010.03.032Suche in Google Scholar PubMed

42. Manzano, M., Aina, V., Areán, C. O., Balas, F., Cauda, V., Colilla, M., Delgado, M. R., Vallet-Regí, M.: Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem. Eng. J. 137, 30 (2008).10.1016/j.cej.2007.07.078Suche in Google Scholar

43. Kapoor, S., Hegde, R., Bhattacharyya, A.: J. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J. Control. Release 140, 34 (2009).10.1016/j.jconrel.2009.07.015Suche in Google Scholar

44. Guo, S., Li, D., Zhang, L., Li, J., Wang, E.: Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30, 1881 (2009).10.1016/j.biomaterials.2008.12.042Suche in Google Scholar PubMed

45. Tang, Q., Xu, Y., Wu, D., Sun, Y.: A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J. Solid State Chem. 179, 1513 (2006).10.1016/j.jssc.2006.02.004Suche in Google Scholar

46. Rámila, A., Muñoz, B., Pérez-Pariente, J., Vallet-Regí, M.: Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Technol. 26, 1199 (2003).10.1023/A:1020764319963Suche in Google Scholar

47. Hudson, S. P., Padera, R. F., Langer, R., Kohane, D. S.: The biocompatibility of mesoporous silicates. Biomaterials 29, 4045 (2008).10.1016/j.biomaterials.2008.07.007Suche in Google Scholar PubMed

48. Kohane, D. S., Tse, J. Y., Yeo, Y., Padera, R., Shubina, M., Langer, R.: Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J. Biomed. Mater. Res. A 77A, 351 (2006).10.1002/jbm.a.30654Suche in Google Scholar

49. Tomazic-Jezic, V. J., Merritt, K., Umbreit, T. H.: Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. J. Biomed. Mater. Res. 55, 523 (2001).10.1002/1097-4636(20010615)55:4<523::AID-JBM1045>3.0.CO;2-GSuche in Google Scholar PubMed

50. Vallet-Regí, M.: Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem. Eur. J. 12, 5934 (2006).10.1002/chem.200600226Suche in Google Scholar

51. Lu, J., Liong, M., Zink, J. I., Tamanoi, F.: Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3, 1341 (2007).10.1002/smll.200700005Suche in Google Scholar PubMed

Received: 2017-12-20
Accepted: 2018-09-04
Published Online: 2018-09-29
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2923/pdf
Button zum nach oben scrollen