Startseite Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer

  • Fatimh Alshahri EMAIL logo
Veröffentlicht/Copyright: 1. Februar 2019

Abstract

It is important to study the behavior of recoiling radon atoms 222Rn after decay of parent 226Ra and the effect of parameters on their access to the surrounding medium. The present study was carried out using CR-39 detector to study the effect of grain size on the correlation between surface and mass exhalation rates and the correlation between emanation coefficient and exhalation rate at different masses of soil and phosphate fertilizer. In addition, the relationship between emanation coefficient and the sample mass was studied for different grain sizes (0.1, 0.3, 0.5 and 1 mm). The results showed that there is no effect of grain sizes on the correlation coefficient between surface and mass exhalation rates in soil and fertilizer. The correlation coefficient between emanation coefficient and exhalation rate in different masses of soil was slightly influenced by the grain sizes. While the correlation coefficient between emanation coefficient and exhalation rate in different masses of phosphate fertilizer samples was not affected by the grain sizes (0.1, 0.3 and 0.5 mm). However, it was found that the emanation coefficient decreases exponentially with the mass for soil and phosphate fertilizer. This relationship was not significantly affected by grain size in soil except grain size 1 mm. While this relationship was affected by grain size >0.3 mm in phosphate fertilizer.

Appendix

Table A.1:

Surface exhalation rate, ES, and mass exhalation rate, EM, for different masses, M, of soil and phosphate fertilizer samples with different grain sizes, GS.

Type of sampleGS (mm)M (g)ES (Bq/m h)EM (Bq/kg h)GS (mm)M (g)ES (Bq/m h)EM (Bq/kg h)
Soil0.170.2930.1180.370.2990.121
120.200.047120.1680.04
170.2330.039170.1210.021
220.1500.019220.0920.012
300.0780.007300.3390.032
350.0780.006350.0460.004
0.570.4130.167170.0180.007
120.5020.118120.0550.013
170.3320.055170.6170.103
220.0200.003220.0150.002
300.3730.035300.0140.001
350.0210.002350.0250.002
Phosphate fertilizer0.11.20.8992.120.31.20.1110.261
2.51.071.212.50.3340.377
3.52.882.333.50.3750.303
5.50.0640.0335.50.040.02
8.50.8990.2998.50.0140.005
12.50.0910.02012.50.0270.006
1.20.8992.121.20.1110.261
0.51.20.0740.17511.20.1790.421
2.50.0820.0932.50.0660.075
3.50.0180.0143.50.0220.018
5.51.680.8615.50.8620.443
8.51.530.5088.50.0330.011
12.50.0130.00312.50.220.05
1.20.0740.1751.20.1790.421
Table A.2:

Radon emanation coefficient, E, for different masses of soil and phosphate fertilizer samples with different grain sizes.

Type of sampleGS (mm)M (g)EGS (mm)M (g)EGS (mm)M (g)EGS (mm)M (g)E
Soil0.170.1000.370.1030.570.142170.006
120.04120.034120.10120.011
170.033170.017170.047170.087
220.016220.01220.002220.002
300.006300.027300.03300.001
350.005350.003350.001350.002
Phosphate fertilizer0.11.20.710.31.20.0880.51.20.05911.20.141
2.50.4062.50.1272.50.0312.50.025
3.50.7803.50.1013.50.0053.50.006
5.50.0115.50.0075.50.2895.50.149
8.50.108.50.0028.50.1708.50.004
12.50.00712.50.00212.50.00112.50.017
1.20.711.20.0881.20.0591.20.141

References

1. Alshahri, F.: Measurement of 222Rn concentration and exhalation rate from phosphate rocks using SSBD detector in Saudi Arabia. Arab. J. Sci. Eng. 39(7), 5765 (2014).10.1007/s13369-014-1108-5Suche in Google Scholar

2. Srinivasa, E., Rangaswamy, D. R., Sannappa, J.: Determination of radon activity concentration in drinking water and evaluation of the annual effective dose in Hassan district, Karnataka state, India. J. Radioanal. Nucl. Chem. 305(2), 665 (2015).10.1007/s10967-015-4034-4Suche in Google Scholar

3. Alshahri, F., Alqahtani, M.: Radon concentrations and effective radium contents in local and imported phosphate fertilizers, Saudi Arabia. Arab. J. Sci. Eng. 40(7), 2095 (2015).10.1007/s13369-015-1688-8Suche in Google Scholar

4. UNSCEAR: Sources and Effects of Ionizing Radiation. Vol. I Annex A: Dose Assessment Methodologies, United Nations, New York (2000).Suche in Google Scholar

5. Patra, A. C., Mohapatra, S., Sahoo, S. K., Lenka, P., Dubey, J. S., Thakur, V. K., Kumar, A. V., Ravi, P. M., Tripathi, R. M.: Assessment of ingestion dose due to radioactivity in selected food matrices and water near Vizag, India. J. Radioanal. Nucl. Chem. 300(3), 903 (2014).10.1007/s10967-014-3097-ySuche in Google Scholar

6. Althoyaib, S. S., El-Taher, A.: Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia. J. Radioanal. Nucl. Chem. 304(2), 547 (2015).10.1007/s10967-014-3874-7Suche in Google Scholar

7. Alshahri, F.: Measurement of 222Rn in bottled waters from various sources and estimation of effective dose, Saudi Arabia. Rom. J. phys. 62, 814 (2017).Suche in Google Scholar

8. Alshahri, F., El-Taher, A., Elzain, A. A.: Characterization of radon concentration and annual effective dose of soil surrounding a refinery area, Ras Tanura, Saudi Arabia. J. Environ. Sci. Technol. 10(6), 311 (2017).10.3923/jest.2017.311.319Suche in Google Scholar

9. El-Taher, A., Alharbi, A.: Elemental analysis of quartz by instrumental neutron activation analysis. Appl. Radiat. Isot. 82, 67 (2013).10.1016/j.apradiso.2013.07.002Suche in Google Scholar PubMed

10. El-Taher, A., Ibraheem, A. A., Abdelkawy, S.: Elemental analysis of marble used in Saudi Arabia by different nuclear analytical techniques. Appl. Radiat. Isot. 73, 17 (2013).10.1016/j.apradiso.2012.11.010Suche in Google Scholar PubMed

11. Abumurad, K. M., Al-Tamimi, M. H.: Emanation power of radon and its concentration in soil and rocks. Radiat. Meas. 34(1–6), 423 (2001).10.1016/S1350-4487(01)00199-8Suche in Google Scholar

12. Sundal, A. V., Henriksen, H., Lauitzen, S. E., Soldal, O., Strand, T., Valen, V.: Geological and geochemical factors affecting radon concentrations in dwellings located on permeable glacial sediments e a case study from Kinasarvik, Norway. Environ. Geol. 45(6), 843 (2004).10.1007/s00254-003-0944-5Suche in Google Scholar

13. UNSCEAR: Sources and Effects of Ionizing Radiation. United Nations, New York (1993).Suche in Google Scholar

14. Gundersen, L. C. S.: The effect of rock type, grain size, permeability and moisture content on radon on soil gas. J. Radioanal. Nucl. Chem. 161(2), 325 (1992).10.1007/BF02040479Suche in Google Scholar

15. Chau, N. D., Chrusciel, E., Prokolski, L.: Factors controlling measurements of radon mass exhalation rate. J. Environ. Radioact. 82(3), 363 (2005).10.1016/j.jenvrad.2005.02.006Suche in Google Scholar PubMed

16. Hosoda, M., Shimo, M., Sugino, M., Furukawa, M., Fukushi, M.: Effect of soil moisture content on radon and thoron exhalation. J. Nucl. Sci. Technol. 44(4), 664 (2007).10.1080/18811248.2007.9711855Suche in Google Scholar

17. Idriss, H., Salih, I., Abdulaziz, A. S., Abdelgalil, M. Y., Salih, S. A., Hasan, A. M., ELtahir, M. A., Ahamed, M. M. O.: Study of radon in soil gas, trace elements and climatic parameters around South Kordofan state, Sudan. Environ. Earth Sci. 72(2), 335 (2014).10.1007/s12665-013-2954-2Suche in Google Scholar

18. Jakhu, R., Mehra, R., Bangotra, P., Kaur, K., Mittal, H. M.: Estimation of terrestrial radionuclide concentration and effect of soil parameters on exhalation and emanation rate of radon. J. Geochem. Explor. 184, 296 (2018).10.1016/j.gexplo.2017.03.002Suche in Google Scholar

19. Schumann, R. R., Gundersen, L. C. S.: Geologic and climatic controls on the radon emanation coefficient. Environ. Int. 22, 439 (1996).10.1016/S0160-4120(96)00144-4Suche in Google Scholar

20. Khayrat, A. H., Oliver, M. A., Durrani, S. A.: The effect of soil particle size on radon concentration. Radiat. Meas. 34(1–6), 365 (2001).10.1016/S1350-4487(01)00187-1Suche in Google Scholar

21. UNSCEAR: Exposure to Radon and Thoron and Their Decay Products. Report to the General Assembly, Annex D. United Nations, New York, USA (1982).Suche in Google Scholar

22. UNSCEAR: Sources, Effects and Risks of Ionizing Radiation. United Nations Report, New York, U.S.A: United Nations Publications E. 94 IX. 11 (1988).Suche in Google Scholar

23. Shweikani, R., Giaddui, T. G., Durrani, S.: The effect of soil parameters on the radon concentration values in the environment. Radiat. Meas. 25(1–4), 581 (1995).10.1016/1350-4487(95)00188-KSuche in Google Scholar

24. Albarracín, D., Font, L. I., Amgarou, K., Domingo, C., Frenández, F., Baixeras, C.: Effect of soil parameters on radon entry into a building by a means of the TRANSRAD numerical model. Radiat. Prot. Dosim. 102(4), 359 (2002).10.1093/oxfordjournals.rpd.a006106Suche in Google Scholar PubMed

25. Breitner, D., Arvela, H., Hellmuth, K.-H., Renvall, T.: Effect of moisture content on emanation at different grain size fractions – a pilot study on granitic esker sand sample. J. Environ. Radioact. 101(11), 1002 (2010).10.1016/j.jenvrad.2010.07.008Suche in Google Scholar PubMed

26. Harb, S., Ahmed, N. K., Elnobi, S.: Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples. J. Nucl. Part. Phys. 6(4), 80 (2016).Suche in Google Scholar

27. Khan, M. S., Srivastava, D. S., Azam, A.: Study of radium content and radon exhalation rates in soil samples of northern India. Environ. Earth. Sci. 67(5), 1363 (2012).10.1007/s12665-012-1581-7Suche in Google Scholar

28. Alshahri, F., Alqahtani, M.: Chemical fertilizers as a source of 238U, 40K, 226Ra, 222Rn and trace metal pollutant of the environment in Saudi Arabia. Environ. Sci. Pollut. Res. 22(11), 8339 (2015).10.1007/s11356-014-3984-3Suche in Google Scholar

29. Baykara, O., Dogru, M.: Measurements of radon and uranium concentration in water and soil samples from East Anatolian Active Fault Systems (Turkey). Radiat. Meas. 41(3), 362 (2006).10.1016/j.radmeas.2005.06.016Suche in Google Scholar

30. Somogyi, G., Hafez, A., Hunyadi, I., Toth-Szilagyi, M.: Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors. Nucl. Tracks Radiat. Meas. 12(1–6), 701 (1986).10.1016/1359-0189(86)90683-7Suche in Google Scholar

31. Hassan, N. M.: Radon emanation coefficient and its exhalation rate of wasted petroleum samples associated with petroleum industry in Egypt. J. Radioanal. Nucl. Chem. 299(1), 111 (2014).10.1007/s10967-013-2718-1Suche in Google Scholar

32. Rashmi, Kant, K., Sharma, G. S.: Activity measurements and dependence of radon exhalation rate on physical sample parameters in soil samples. Asian J. Chem. 21(10), S271 (2009).Suche in Google Scholar

Received: 2018-07-12
Accepted: 2018-09-24
Published Online: 2019-02-01
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3027/html
Button zum nach oben scrollen