Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
Abstract
It is important to study the behavior of recoiling radon atoms 222Rn after decay of parent 226Ra and the effect of parameters on their access to the surrounding medium. The present study was carried out using CR-39 detector to study the effect of grain size on the correlation between surface and mass exhalation rates and the correlation between emanation coefficient and exhalation rate at different masses of soil and phosphate fertilizer. In addition, the relationship between emanation coefficient and the sample mass was studied for different grain sizes (0.1, 0.3, 0.5 and 1 mm). The results showed that there is no effect of grain sizes on the correlation coefficient between surface and mass exhalation rates in soil and fertilizer. The correlation coefficient between emanation coefficient and exhalation rate in different masses of soil was slightly influenced by the grain sizes. While the correlation coefficient between emanation coefficient and exhalation rate in different masses of phosphate fertilizer samples was not affected by the grain sizes (0.1, 0.3 and 0.5 mm). However, it was found that the emanation coefficient decreases exponentially with the mass for soil and phosphate fertilizer. This relationship was not significantly affected by grain size in soil except grain size 1 mm. While this relationship was affected by grain size >0.3 mm in phosphate fertilizer.
Appendix
Surface exhalation rate, ES, and mass exhalation rate, EM, for different masses, M, of soil and phosphate fertilizer samples with different grain sizes, GS.
Type of sample | GS (mm) | M (g) | ES (Bq/m h) | EM (Bq/kg h) | GS (mm) | M (g) | ES (Bq/m h) | EM (Bq/kg h) |
---|---|---|---|---|---|---|---|---|
Soil | 0.1 | 7 | 0.293 | 0.118 | 0.3 | 7 | 0.299 | 0.121 |
12 | 0.20 | 0.047 | 12 | 0.168 | 0.04 | |||
17 | 0.233 | 0.039 | 17 | 0.121 | 0.021 | |||
22 | 0.150 | 0.019 | 22 | 0.092 | 0.012 | |||
30 | 0.078 | 0.007 | 30 | 0.339 | 0.032 | |||
35 | 0.078 | 0.006 | 35 | 0.046 | 0.004 | |||
0.5 | 7 | 0.413 | 0.167 | 1 | 7 | 0.018 | 0.007 | |
12 | 0.502 | 0.118 | 12 | 0.055 | 0.013 | |||
17 | 0.332 | 0.055 | 17 | 0.617 | 0.103 | |||
22 | 0.020 | 0.003 | 22 | 0.015 | 0.002 | |||
30 | 0.373 | 0.035 | 30 | 0.014 | 0.001 | |||
35 | 0.021 | 0.002 | 35 | 0.025 | 0.002 | |||
Phosphate fertilizer | 0.1 | 1.2 | 0.899 | 2.12 | 0.3 | 1.2 | 0.111 | 0.261 |
2.5 | 1.07 | 1.21 | 2.5 | 0.334 | 0.377 | |||
3.5 | 2.88 | 2.33 | 3.5 | 0.375 | 0.303 | |||
5.5 | 0.064 | 0.033 | 5.5 | 0.04 | 0.02 | |||
8.5 | 0.899 | 0.299 | 8.5 | 0.014 | 0.005 | |||
12.5 | 0.091 | 0.020 | 12.5 | 0.027 | 0.006 | |||
1.2 | 0.899 | 2.12 | 1.2 | 0.111 | 0.261 | |||
0.5 | 1.2 | 0.074 | 0.175 | 1 | 1.2 | 0.179 | 0.421 | |
2.5 | 0.082 | 0.093 | 2.5 | 0.066 | 0.075 | |||
3.5 | 0.018 | 0.014 | 3.5 | 0.022 | 0.018 | |||
5.5 | 1.68 | 0.861 | 5.5 | 0.862 | 0.443 | |||
8.5 | 1.53 | 0.508 | 8.5 | 0.033 | 0.011 | |||
12.5 | 0.013 | 0.003 | 12.5 | 0.22 | 0.05 | |||
1.2 | 0.074 | 0.175 | 1.2 | 0.179 | 0.421 |
Radon emanation coefficient, E, for different masses of soil and phosphate fertilizer samples with different grain sizes.
Type of sample | GS (mm) | M (g) | E | GS (mm) | M (g) | E | GS (mm) | M (g) | E | GS (mm) | M (g) | E |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil | 0.1 | 7 | 0.100 | 0.3 | 7 | 0.103 | 0.5 | 7 | 0.142 | 1 | 7 | 0.006 |
12 | 0.04 | 12 | 0.034 | 12 | 0.10 | 12 | 0.011 | |||||
17 | 0.033 | 17 | 0.017 | 17 | 0.047 | 17 | 0.087 | |||||
22 | 0.016 | 22 | 0.01 | 22 | 0.002 | 22 | 0.002 | |||||
30 | 0.006 | 30 | 0.027 | 30 | 0.03 | 30 | 0.001 | |||||
35 | 0.005 | 35 | 0.003 | 35 | 0.001 | 35 | 0.002 | |||||
Phosphate fertilizer | 0.1 | 1.2 | 0.71 | 0.3 | 1.2 | 0.088 | 0.5 | 1.2 | 0.059 | 1 | 1.2 | 0.141 |
2.5 | 0.406 | 2.5 | 0.127 | 2.5 | 0.031 | 2.5 | 0.025 | |||||
3.5 | 0.780 | 3.5 | 0.101 | 3.5 | 0.005 | 3.5 | 0.006 | |||||
5.5 | 0.011 | 5.5 | 0.007 | 5.5 | 0.289 | 5.5 | 0.149 | |||||
8.5 | 0.10 | 8.5 | 0.002 | 8.5 | 0.170 | 8.5 | 0.004 | |||||
12.5 | 0.007 | 12.5 | 0.002 | 12.5 | 0.001 | 12.5 | 0.017 | |||||
1.2 | 0.71 | 1.2 | 0.088 | 1.2 | 0.059 | 1.2 | 0.141 |
References
1. Alshahri, F.: Measurement of 222Rn concentration and exhalation rate from phosphate rocks using SSBD detector in Saudi Arabia. Arab. J. Sci. Eng. 39(7), 5765 (2014).10.1007/s13369-014-1108-5Suche in Google Scholar
2. Srinivasa, E., Rangaswamy, D. R., Sannappa, J.: Determination of radon activity concentration in drinking water and evaluation of the annual effective dose in Hassan district, Karnataka state, India. J. Radioanal. Nucl. Chem. 305(2), 665 (2015).10.1007/s10967-015-4034-4Suche in Google Scholar
3. Alshahri, F., Alqahtani, M.: Radon concentrations and effective radium contents in local and imported phosphate fertilizers, Saudi Arabia. Arab. J. Sci. Eng. 40(7), 2095 (2015).10.1007/s13369-015-1688-8Suche in Google Scholar
4. UNSCEAR: Sources and Effects of Ionizing Radiation. Vol. I Annex A: Dose Assessment Methodologies, United Nations, New York (2000).Suche in Google Scholar
5. Patra, A. C., Mohapatra, S., Sahoo, S. K., Lenka, P., Dubey, J. S., Thakur, V. K., Kumar, A. V., Ravi, P. M., Tripathi, R. M.: Assessment of ingestion dose due to radioactivity in selected food matrices and water near Vizag, India. J. Radioanal. Nucl. Chem. 300(3), 903 (2014).10.1007/s10967-014-3097-ySuche in Google Scholar
6. Althoyaib, S. S., El-Taher, A.: Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia. J. Radioanal. Nucl. Chem. 304(2), 547 (2015).10.1007/s10967-014-3874-7Suche in Google Scholar
7. Alshahri, F.: Measurement of 222Rn in bottled waters from various sources and estimation of effective dose, Saudi Arabia. Rom. J. phys. 62, 814 (2017).Suche in Google Scholar
8. Alshahri, F., El-Taher, A., Elzain, A. A.: Characterization of radon concentration and annual effective dose of soil surrounding a refinery area, Ras Tanura, Saudi Arabia. J. Environ. Sci. Technol. 10(6), 311 (2017).10.3923/jest.2017.311.319Suche in Google Scholar
9. El-Taher, A., Alharbi, A.: Elemental analysis of quartz by instrumental neutron activation analysis. Appl. Radiat. Isot. 82, 67 (2013).10.1016/j.apradiso.2013.07.002Suche in Google Scholar PubMed
10. El-Taher, A., Ibraheem, A. A., Abdelkawy, S.: Elemental analysis of marble used in Saudi Arabia by different nuclear analytical techniques. Appl. Radiat. Isot. 73, 17 (2013).10.1016/j.apradiso.2012.11.010Suche in Google Scholar PubMed
11. Abumurad, K. M., Al-Tamimi, M. H.: Emanation power of radon and its concentration in soil and rocks. Radiat. Meas. 34(1–6), 423 (2001).10.1016/S1350-4487(01)00199-8Suche in Google Scholar
12. Sundal, A. V., Henriksen, H., Lauitzen, S. E., Soldal, O., Strand, T., Valen, V.: Geological and geochemical factors affecting radon concentrations in dwellings located on permeable glacial sediments e a case study from Kinasarvik, Norway. Environ. Geol. 45(6), 843 (2004).10.1007/s00254-003-0944-5Suche in Google Scholar
13. UNSCEAR: Sources and Effects of Ionizing Radiation. United Nations, New York (1993).Suche in Google Scholar
14. Gundersen, L. C. S.: The effect of rock type, grain size, permeability and moisture content on radon on soil gas. J. Radioanal. Nucl. Chem. 161(2), 325 (1992).10.1007/BF02040479Suche in Google Scholar
15. Chau, N. D., Chrusciel, E., Prokolski, L.: Factors controlling measurements of radon mass exhalation rate. J. Environ. Radioact. 82(3), 363 (2005).10.1016/j.jenvrad.2005.02.006Suche in Google Scholar PubMed
16. Hosoda, M., Shimo, M., Sugino, M., Furukawa, M., Fukushi, M.: Effect of soil moisture content on radon and thoron exhalation. J. Nucl. Sci. Technol. 44(4), 664 (2007).10.1080/18811248.2007.9711855Suche in Google Scholar
17. Idriss, H., Salih, I., Abdulaziz, A. S., Abdelgalil, M. Y., Salih, S. A., Hasan, A. M., ELtahir, M. A., Ahamed, M. M. O.: Study of radon in soil gas, trace elements and climatic parameters around South Kordofan state, Sudan. Environ. Earth Sci. 72(2), 335 (2014).10.1007/s12665-013-2954-2Suche in Google Scholar
18. Jakhu, R., Mehra, R., Bangotra, P., Kaur, K., Mittal, H. M.: Estimation of terrestrial radionuclide concentration and effect of soil parameters on exhalation and emanation rate of radon. J. Geochem. Explor. 184, 296 (2018).10.1016/j.gexplo.2017.03.002Suche in Google Scholar
19. Schumann, R. R., Gundersen, L. C. S.: Geologic and climatic controls on the radon emanation coefficient. Environ. Int. 22, 439 (1996).10.1016/S0160-4120(96)00144-4Suche in Google Scholar
20. Khayrat, A. H., Oliver, M. A., Durrani, S. A.: The effect of soil particle size on radon concentration. Radiat. Meas. 34(1–6), 365 (2001).10.1016/S1350-4487(01)00187-1Suche in Google Scholar
21. UNSCEAR: Exposure to Radon and Thoron and Their Decay Products. Report to the General Assembly, Annex D. United Nations, New York, USA (1982).Suche in Google Scholar
22. UNSCEAR: Sources, Effects and Risks of Ionizing Radiation. United Nations Report, New York, U.S.A: United Nations Publications E. 94 IX. 11 (1988).Suche in Google Scholar
23. Shweikani, R., Giaddui, T. G., Durrani, S.: The effect of soil parameters on the radon concentration values in the environment. Radiat. Meas. 25(1–4), 581 (1995).10.1016/1350-4487(95)00188-KSuche in Google Scholar
24. Albarracín, D., Font, L. I., Amgarou, K., Domingo, C., Frenández, F., Baixeras, C.: Effect of soil parameters on radon entry into a building by a means of the TRANSRAD numerical model. Radiat. Prot. Dosim. 102(4), 359 (2002).10.1093/oxfordjournals.rpd.a006106Suche in Google Scholar PubMed
25. Breitner, D., Arvela, H., Hellmuth, K.-H., Renvall, T.: Effect of moisture content on emanation at different grain size fractions – a pilot study on granitic esker sand sample. J. Environ. Radioact. 101(11), 1002 (2010).10.1016/j.jenvrad.2010.07.008Suche in Google Scholar PubMed
26. Harb, S., Ahmed, N. K., Elnobi, S.: Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples. J. Nucl. Part. Phys. 6(4), 80 (2016).Suche in Google Scholar
27. Khan, M. S., Srivastava, D. S., Azam, A.: Study of radium content and radon exhalation rates in soil samples of northern India. Environ. Earth. Sci. 67(5), 1363 (2012).10.1007/s12665-012-1581-7Suche in Google Scholar
28. Alshahri, F., Alqahtani, M.: Chemical fertilizers as a source of 238U, 40K, 226Ra, 222Rn and trace metal pollutant of the environment in Saudi Arabia. Environ. Sci. Pollut. Res. 22(11), 8339 (2015).10.1007/s11356-014-3984-3Suche in Google Scholar
29. Baykara, O., Dogru, M.: Measurements of radon and uranium concentration in water and soil samples from East Anatolian Active Fault Systems (Turkey). Radiat. Meas. 41(3), 362 (2006).10.1016/j.radmeas.2005.06.016Suche in Google Scholar
30. Somogyi, G., Hafez, A., Hunyadi, I., Toth-Szilagyi, M.: Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors. Nucl. Tracks Radiat. Meas. 12(1–6), 701 (1986).10.1016/1359-0189(86)90683-7Suche in Google Scholar
31. Hassan, N. M.: Radon emanation coefficient and its exhalation rate of wasted petroleum samples associated with petroleum industry in Egypt. J. Radioanal. Nucl. Chem. 299(1), 111 (2014).10.1007/s10967-013-2718-1Suche in Google Scholar
32. Rashmi, Kant, K., Sharma, G. S.: Activity measurements and dependence of radon exhalation rate on physical sample parameters in soil samples. Asian J. Chem. 21(10), S271 (2009).Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics
Artikel in diesem Heft
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics