Startseite Investigation of radiation shielding properties for some ceramics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of radiation shielding properties for some ceramics

  • Mustafa R. Kacal EMAIL logo , Ferdi Akman und M. I. Sayyed
Veröffentlicht/Copyright: 27. September 2018

Abstract

In this work, the radiation shielding parameters like mass and linear attenuation coefficient, half value layer, tenth value layer, mean free path, effective atomic number, effective electron density, exposure buildup factor and fast neutron removal cross section were examined for the peridot, aluminum nitride, ruby, yttrium oxide, magnesium silicate, and silicon nitride ceramic samples. Furthermore, the dependence of the effective conductivity on the energy was investigated. The experimental studies were carried out in the photon energy range of 81 keV–1333 keV using a high resolution HPGe detector and six different radioactive sources. The experimental results were validated with the theoretical results and a good agreement was observed for all samples. The yttrium oxide has more shielding effectiveness for γ radiation, while magnesium silicate, aluminum nitride and silicon nitride possess least γ-ray shielding. However, the optimum neutron shielding material is ruby.

Acknowledgements

This paper was produced from the project (number: FEN-BAP-A-160317-23) supported by The Scientific Research Projects Coordination Unit of Giresun University.

References

1. Lakshminarayana, G., Sayyed, M. I., Baki, S. O., Lira, A., Dong, M. G., Kaky, K. M., Kityk, I. V., Mahdi, M. A.: Optical absorption and gamma-radiation-shielding parameter studies of Tm3+-doped multicomponent borosilicate glasses. Apll. Phys. A-Mater. 124, 378 (2018).10.1007/s00339-018-1801-4Suche in Google Scholar

2. Akman, F., Geçibesler, I. H., Sayyed, M. I., Tijani, S. A., Tufekci, A. R., Demirtas, I.: Determination of some useful radiation interaction parameters for waste foods. Nucl. Eng. Technol. 50(6), 944 (2018).10.1016/j.net.2018.05.007Suche in Google Scholar

3. Akman, F., Geçibesler, İ. H., Demirkol, İ., Çetin, A.: Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies. Can. J. Phys. https://doi.org/10.1139/cjp-2017-0923, (2018).10.1139/cjp-2017-0923Suche in Google Scholar

4. Akman, F., Kaçal, M. R., Akman, F., Soylu, M. S.: Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005 (2017).10.1139/cjp-2016-0811Suche in Google Scholar

5. Akman, F., Durak, R., Kacal, M. R., Bezgin, F.: Study of absorption parameters around the K edge for selected compounds of Gd. X-ray Spectrom. 45, 103 (2016).10.1002/xrs.2676Suche in Google Scholar

6. Akman, F., Durak, R., Turhan, M. F., Kacal, M. R.: Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isotopes 101, 107 (2015).10.1016/j.apradiso.2015.04.001Suche in Google Scholar PubMed

7. Tellili, B., Elmahroug, Y., Souga, C.: Investigation on radiation shielding parameters of cerrobend alloys. Nucl. Eng. Technol. 49, 1758 (2017).10.1016/j.net.2017.08.020Suche in Google Scholar

8. Elmahroug, Y., Tellili, B., Sougo, C.: Determination of shielding parameters for different types of resins. Ann. Nucl. Energy 63, 619 (2014).10.1016/j.anucene.2013.09.007Suche in Google Scholar

9. Chanthima, N., Kaewkhao, J.: Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann. Nucl. Energy 55, 23 (2013).10.1016/j.anucene.2012.12.011Suche in Google Scholar

10. Barsoum, M. W.: Fundamentals of Ceramics (Series in Materials Science and Engineering) (2002), first ed., CRC Press, New York.10.1201/b21299Suche in Google Scholar

11. Kadam, R. H., Alone, S. T., Bichile, G. K., Jadhav, K. M.: Measurement of atomic number and mass attenuation coefficient in magnesium ferrite. Pramana 68(5), 869 (2017).10.1007/s12043-007-0085-6Suche in Google Scholar

12. Buyuk, B., Tugrul, A. B.: An investigation on gamma attenuation behavior of titanium diboride reinforced boron carbide-silicon carbide composites. Radiat. Phys. Chem. 97, 354 (2014).10.1016/j.radphyschem.2013.07.025Suche in Google Scholar

13. Buyuk, B., Tugrul, A. B.: Gamma and neutron attenuation behaviors of boron carbide-silicon carbide composites. Ann. Nucl. Energy 71, 46 (2014).10.1016/j.anucene.2014.03.026Suche in Google Scholar

14. Vejdani-Noghreiyon, A., Aliakbari, E., Ebrahimi-Khankook, A., Ghasemifard, M.: Theoretical and experimental determination of mass attenuation coefficients of lead-based ceramics and their comparison with simulation. Nucl. Technol. Radiat. 29, 142 (2016).10.2298/NTRP1602142VSuche in Google Scholar

15. Singh, V. P., Badiger, N. M., Korkut, T.: Gamma exposure buildup factors and neutron total cross section of ceramic hosts for high level radioactive wastes. Prog. Nucl. Energ. 104, 1 (2018).10.1016/j.pnucene.2014.10.007Suche in Google Scholar

16. Manjunatha, H. C.: Influence of gamma irradiation on conductivity of YBa2Cu3O7. Radiat. Phys. Chem. 113, 24 (2015).10.1016/j.radphyschem.2015.04.010Suche in Google Scholar

17. Manjunatha, H. C., Seenappa, L., Sridhar, K. N., Hanumantharayappa, C.: Study of gamma/X-ray interaction in Kondo insulators. X-ray Spectrom. 47, 34 (2018).10.1002/xrs.2809Suche in Google Scholar

18. Hine, G. J.: The effective atomic numbers of materials for various gamma ray processes. Phys. Rev. 85, 725 (1952).Suche in Google Scholar

19. Devillers, M. A. C.: Lifetime of electrons in metals at room temperature. Solid State Commun. 49(11), 1019 (1984).10.1016/0038-1098(84)90413-7Suche in Google Scholar

20. Seenappa, L., Manjunatha, H. C., Chandrika, B. M., Sridhar, K. N., Hanumantharayappa, C.: Gamma, X-ray and neutron interaction parameters of Mg-Gd-Y-Zn-Zr alloys. Radiat. Phys. Chem. 150, 199 (2018).10.1016/j.radphyschem.2018.06.026Suche in Google Scholar

21. Obaid, S. S., Sayyed, M. I., Gaikwad, D. K., Pawar, P. P.: Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86 (2018).10.1016/j.radphyschem.2018.02.026Suche in Google Scholar

22. Gaikwad, D. K., Obaid, S. S., Sayyed, M. I., Bhosale, R. R., Awasarmal, V. V., Kumar, A., Shirsat, M. D., Pawar, P. P.: Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Mater. Chem. Phys. 213, 508 (2018).10.1016/j.matchemphys.2018.04.019Suche in Google Scholar

23. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H.: X-ray absorption in matter: reengineering XCOM. Radiat. Phys. Chem. 60, 23 (2001).10.1016/S0969-806X(00)00324-8Suche in Google Scholar

24. Sayyed, M. I., Issa, S. A. M., Auda, S. H.: Assessment of radio-protective properties of some anti-inflammatory drugs. Prog. Nucl. Energ. 100, 297 (2017).10.1016/j.pnucene.2017.07.003Suche in Google Scholar

Received: 2018-07-17
Accepted: 2018-08-30
Published Online: 2018-09-27
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3030/html
Button zum nach oben scrollen