Abstract
Smectite-rich natural clay is being evaluated as the backfill and buffer material in the Indian repository program for the nuclear high level waste disposal. In the natural clay, montmorillonite is one of the major mineral component governing the sorption behavior of various radionuclides. In the present work, influence of sulfate anion on sorption of Eu(III) by Na-montmorillonite has been investigated. The effect of pH and sulfate concentration on Eu(III) sorption by Na-montmorillonite was used to understand the mechanism of sorption process. The Eu(III) sorption by clay at varying pH was virtually pH independent at lower pH (<4), with ion exchange as the dominant mode for Eu(III) sorption. In the pH region of 4–6.5, sharp increase in sorption indicates surface complexation as predominant mechanism. At pH>6.5, the sorption attained a constant value. To deduce the mechanism of sorption of Eu(III) on Na-montmorillonite surface in presence of sulfate, ATR-FTIR spectroscopic investigations has been carried out which indicate the presence of sulfate bearing species on Na-montmorillonite surface. Using spectroscopic findings as a guide, the surface complexation modeling, in absence and presence of sulfate, was successfully carried out.
Acknowledgements
The authors would like to acknowledge Dr. N.L Misra for carrying out the elemental analysis of Na-montmorillonite clay by TXRF. Acknowledgements are due to Shri. B. N. Rath and Dr. Shankar Koiry in recording SEM and IR respectively which helped authors in thorough characterization of clay.
References
1. Schwyn, B., Wersin, P., Ruedi, J., Schneider, J., Altmann S., Missana, T., Noseck, U.: FUNMIG integrated project results and conclusions from a safety case perspective. Appl. Geochem. 27, 501 (2012).10.1016/j.apgeochem.2011.09.018Search in Google Scholar
2. Missana, T., Alonso, U., Garcia-Gutierrez, M., Mingarro, M.: Role of bentonite colloids on europium and plutonium migration in a granite fracture. Appl. Geochem. 23, 1484 (2008).10.1016/j.apgeochem.2008.01.008Search in Google Scholar
3. Lutzenkirchen, J.: Summary of studies on (ad)sorption as a ‘‘well-established’’ process within FUNMIG activities. Appl. Geochem. 27, 427 (2012).10.1016/j.apgeochem.2011.09.012Search in Google Scholar
4. Bradbury, M. H., Baeyens, B.: Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV),Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim. Cosmochim. Acta 69, 875 (2005).10.1016/j.gca.2004.07.020Search in Google Scholar
5. Rabung, Th., Pierret, M. C., Bauer, A., Geckeis, H., Bradbury, M. H., Baeyens, B.: Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta 69, 5393 (2005).10.1016/j.gca.2005.06.030Search in Google Scholar
6. Alliot, C., Bion, L., Mercier, F., Toulhoat, P.: Effect of aqueous acetic, oxalic, and carbonic acids on the adsorption of europium(III) onto α-alumina. J. Colloid Interface Sci. 298, 573 (2006).10.1016/j.jcis.2006.01.004Search in Google Scholar PubMed
7. Fouchard, A. K., Drot, R., Simoni, E., Marmier, N., Fromage, F., Ehrhard, J. J.: Structural identification of europium(III) adsorption Complexes on Montmorillonite. New. J. Chem. 28, 864 (2004).10.1039/b400306cSearch in Google Scholar
8. Wang, X., Sun, Y., Alsaedi, A., Hayat, T., Wang, X.: Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch,TRLFS and kinetic desorption techniques. Chem. Eng. J. 264, 570 (2015).10.1016/j.cej.2014.11.136Search in Google Scholar
9. Farrah, H., Pickering, W. F.: Influence of clay-solute interactions on aqueous heavy metal ion levels. Water Air Soil Pollut. 8, 189 (1977).10.1007/BF00294042Search in Google Scholar
10. Adebowale, K. O., Unuabonah, I. E., Olu-Owolabi, B. I.: Adsorption of some heavy metal ions on sulfate- and phosphate-modified kaolin. Appl. Clay Sci. 29, 145 (2005).10.1016/j.clay.2004.10.003Search in Google Scholar
11. Zhu, J., Cozzolino, V., Fernandez, M., Sánchez, R. M. T., Pigna, M., Huang, Q., Violante, A.: Sorption of Cu on a Fe-deformed montmorillonite complex: Effect of pH, ionicstrength, competitor heavy metal, and inorganic and organic ligands. Appl. Clay Sci. 52, 339 (2011).10.1016/j.clay.2011.03.012Search in Google Scholar
12. Bolan, N. S., Naidu, R., Khan, M. A. R., Tillman, R. W., Syers, J. K.: The effects of anion sorption on sorption and leaching of cadmium. Aust. J. Soil Res. 37, 445 (1999).10.1071/S97046Search in Google Scholar
13. Garcia-Miragaya, J., Page, A. L.: Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of cd by montmorillonite. Soil Sci. Soc. Am. J. 40, 658 (1976).10.2136/sssaj1976.03615995004000050019xSearch in Google Scholar
14. Gupta, S. S., Bhattacharyya, K. G.: Adsorption of heavy metals on kaolinite and montmorillonite: a review. Phys. Chem. Chem. Phys. 14, 6698 (2012).10.1039/c2cp40093fSearch in Google Scholar PubMed
15. Kurniawan, A., Ismadji, S., Soetaredjo, F. E., Ayucitra, A.: Natural clays/clay minerals and modified forms for heavy metals removal. In: Sharma, S. K. (Ed.), Heavy metals in water: presence, removal and safety.Search in Google Scholar
16. Olu-Owolabi, B. I., Unuabonah, E. I.: Kinetics and thermodynamics of the removal of Zn2+ and Cu2+ from aqueous solution by sulphate and phosphate modified bentonite clay. J. Hazad. Mat. 184, 731 (2010).10.1016/j.jhazmat.2010.08.100Search in Google Scholar PubMed
17. Bachmaf, S., Planer-Friedrich, B., Merkel, B. J.: Effect of sulphate, carbonate, and phosphate on the uranium(VI) sorption behaviour onto bentonite. Radiochim. Acta. 96, 359 (2008).10.1524/ract.2008.1496Search in Google Scholar
18. Troyera, L. D., Maillot, F., Wang, Z., Wang, Z., Mehta, V. S., Giammar, D. E., Catalano, J. G.: Effect of phosphate on U (VI) sorption to montmorillonite: Ternary complexation and precipitation barrier. Geochim. Cosmochim. Acta 175, 86 (2016).10.1016/j.gca.2015.11.029Search in Google Scholar
19. Fernandes, M. M., Baeyens, B., Dähn R., Scheinost, A. C., Bradbury, M. H.: U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study. Geochim. Cosmochim. Acta. 93, 262 (2012).10.1016/j.gca.2012.04.017Search in Google Scholar
20. Fernandes, M. M., Baeyens, B., Bradbury, M. H.: The influence of carbonate complexation on lanthanide/actinide sorption on montmorillonite. Radiochim. Acta 96, 691 (2008).10.1524/ract.2008.1555Search in Google Scholar
21. Fernandes, M. M., Scheinost, A. C., Baeyens, B.: Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites. Water Res. 99, 74 (2016).10.1016/j.watres.2016.04.046Search in Google Scholar PubMed
22. Chen, Z., Jin, Q., Guo, Z., Montavon, G., Wu, W.: Surface complexation modeling of Eu(III) and phosphate on Na-bentonite: binary and ternary adsorption systems. Chem. Eng. J. 256, 61 (2014).10.1016/j.cej.2014.06.096Search in Google Scholar
23. Patel, M. A., Kar, A. S., Kumar, S., Tomar, B. S.: Effect of phosphate on sorption of Eu(III) by montmorillonite. J. Radioanal. Nucl. Chem. 313, (2017) 537.10.1007/s10967-017-5304-0Search in Google Scholar
24. Miao, Z., Brusseau, M. L., Carroll, K. C., Carreón-Diazconti, C., Johnson, B.: Sulfate reduction in groundwater: characterization and applications for remediation. Environ. Geochem. Health 34, 539 (2012).10.1007/s10653-011-9423-1Search in Google Scholar PubMed PubMed Central
25. Liu, X., Simunek, J., Li, L., He, J.: Identification of sulfate sources in groundwater using isotope analysis and modeling of flood irrigation with waters of different quality in the Jinghuiqu district of China. Environ. Earth Sci. 69, 1589 (2013).10.1007/s12665-012-1993-4Search in Google Scholar
26. Samborska, K., Halas, S., Bottrell, S. H.: Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland. J. Hydrol. 486, 136 (2013).10.1016/j.jhydrol.2013.01.017Search in Google Scholar
27. Kefeni, K. K., Msagati, T. M., Mareee, J. P., Mamba, B. B.: Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation. Min. Eng. 81, 79 (2015).10.1016/j.mineng.2015.07.016Search in Google Scholar
28. Ding, M., Kelkar, S., Meijer, A.: Surface complexation modeling of americium sorption onto volcanic tuff. J. Env. Radioactiv. 136, 181 (2014).10.1016/j.jenvrad.2014.06.007Search in Google Scholar PubMed
29. Kumar, S., Pente, A. S., Bajpai, R. K., Kaushik, C. P., Tomar, B. S.: Americium sorption on smectite-rich natural clay from granitic groundwater. Appl. Geochem. 35, 28 (2013).10.1016/j.apgeochem.2013.05.016Search in Google Scholar
30. Baeyens, B., Bradbury, M. H.: Cation exchange capacity measurements on illite using the sodium and cesium isotope dilution technique: effects of the index cation, electrolyte concentration and competition: modeling. Clays Clay Miner. 52, 421 (2004).10.1346/CCMN.2004.0520403Search in Google Scholar
31. Vinoda, B. M., Manjanna, J.: Dissolution of iron in salicylic acid and cation exchange between Fe(II)-salicylate and Na-montmorillonite to form Fe(II)-montmorillonite. Appl. Clay. Sci. 97–98, 78 (2014).10.1016/j.clay.2014.05.005Search in Google Scholar
32. Bradbury, M. H., Baeyens, B.: Sorption of Eu on Na- and Ca-montmorillonite: Experimental investigations and modelling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 66, 2325 (2002).10.1016/S0016-7037(02)00841-4Search in Google Scholar
33. Herbelin, A. L., Westall, J. C.: FITEQL, a computer program for determination of chemical equilibrium constant from experimental data. (1999), Department of Chemistry, Oregon State University, Oregon 97331, USA.Search in Google Scholar
34. Bradbury, M. H., Baeyens, B.: Modelling sorption data for the actinides Am(III), Np(V) and Pa(V) on montmorillonite. Radiochim. Acta 94, 619 (2006).10.1524/ract.2006.94.9-11.619Search in Google Scholar
35. Harun, F. W., Almadani, E. A., Radzi, S. M.: Metal cation exchanged montmorillonite K10 (MMT K10): surface properties and catalytic activity. J. Sci. Res. Dev. 3, 90 (2016).Search in Google Scholar
36. Wang, F.-F., Liu, J., Li, H., Liu, C.-L., Yang, R.-Z., Dong, W.-S.: Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10. Green Chem. 17, 2455 (2015).10.1039/C4GC02131BSearch in Google Scholar
37. Kanda, L. R. S., Corazza, M. L., Zatta, L., Wypych, F.: Kinetics evaluation of the ethyl esterification of long chain fatty acids using commercial montmorillonite K10 as catalyst. Fuel 193, 265 (2017).10.1016/j.fuel.2016.12.055Search in Google Scholar
38. Handbook for clay minerals and othernon-metallic minerals. In: Van Olphena, H., Fripiat, J. J. (Eds.), publishedby Pergamon Press Aurora, USA.Search in Google Scholar
39. Xi, Y., Frost, R. L., He, H.: Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl and trialkyl methyl ammonium bromides. J. Colloid Interface Sci. 305, 150 (2007).10.1016/j.jcis.2006.09.033Search in Google Scholar PubMed
40. Manjanna, J., Kozaki, T., Sato, S.: Fe(III)-montmorillonite: Basic properties and diffusion of tracers relevant to alteration of bentonite in deep geological disposal. Appl. Clay Sci. 43, 208 (2009).10.1016/j.clay.2008.09.007Search in Google Scholar
41. Glaus, M. A., Frick, S., Rosse, R., Loon, L. R. V.: Comparative study of tracer diffusion of HTO, 22Na+ and 36Cl in compacted kaolinite, illite and montmorillonite. Geochim. Cosmochim. Acta 74, 1999 (2010).10.1016/j.gca.2010.01.010Search in Google Scholar
42. Lainé, M., Balan, E., Allard, T., Paineau, E., Jeunesse, P., Mostafavi, M., Robert, J.-L.: Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay. RSC Adv. 7, 526 (2017).10.1039/C6RA24861FSearch in Google Scholar
43. Bukka, K., Miller, J. D.: FTIR study of deuterated montmorillonites: structural features relevant to pillared clay stability. Clays Clay Miner. 40, 92 (1992).10.1346/CCMN.1992.0400110Search in Google Scholar
44. Tyagi, B., Chudasama, C. D., Jasra, R. V.: Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta A 64, 273 (2006).10.1016/j.saa.2005.07.018Search in Google Scholar PubMed
45. Adikary, S. U., Ashokcline, M., Nirojan, K.: Characterization of montmorillonite clay from naturally occurring clay deposits in murunkan area. Proceedings of 8th International Research Conference, KDU, 163 (2015).Search in Google Scholar
46. Lerot, L., Low, P. F.: Effect of swelling on the infrared absorption spectrum of montmorillonite. Clays Clay Miner. 24, 191 (1976).10.1346/CCMN.1976.0240407Search in Google Scholar
47. Baeyens, B., Bradbury, M. H.: A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-montmorillonite. Part I: physico-chemical characterization and titration measurements. PSI Bericht Nr. 95-10, Nagra NTB 95-04 (1995), Paul Scherrer Institut, Villigen PSI, Switzerland.Search in Google Scholar
48. Sigma Aldrich Raman FTIR n.d.<http://www.sigmaaldrich.com/catalog/product/aldrich/281522? lang=pt®ion=BR> [accessed May 19, 2015].Search in Google Scholar
49. Stumm, W.: Chemistry of the solid water interface (1992), A Wiley-Interscience Publication, Canada.Search in Google Scholar
50. Hummel, W., Berner, U., Curti, E., Pearson, F. J., Thoenen, T.: NAGRA/PSI chemical thermodynamic database/0.1/0.1. (2002), Wettingen/Switzerland.Search in Google Scholar
51. Guo, Z., Xu, J., Shi, K., Tang, Y., Wu, W., Tao, Z.: Eu(III) adsorption/desorption on Na-bentonite: Experimental and modeling studies. Colloids Surf. A: Physicochem. Eng. Aspects. 339, 126 (2009).10.1016/j.colsurfa.2009.02.007Search in Google Scholar
52. Dawodu, A. F., Akpomie, K. G.: Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J. Mater. Res. Technol. 3, 129 (2014).10.1016/j.jmrt.2014.03.002Search in Google Scholar
53. Bradbury, M. H., Baeyens, B.: Sorption modelling on illite Part II: actinide sorptionand linear free energy relationships. Geochim. Cosmochim. Acta 73, 1004 (2009).10.1016/j.gca.2008.11.016Search in Google Scholar
54. Dzombak, D. A., Morel, F. M.: Surface complexation modeling: hydrous ferric hydroxide (1990), Wiley-Interscience, New York.Search in Google Scholar
55. Rabung, Th., Stumpf, Th., Geckeis, H., Klenze, R., Kim, J. I.: Sorption of Am(III) and Eu(III) onto γ-alumina: experiment and modeling. Radiochim. Acta 88, 711 (2000).10.1524/ract.2000.88.9-11.711Search in Google Scholar
56. Sasakia, T., Uedaa, K., Saitob, T., Aoyagic, N., Kobayashia, T., Takagia, I., Kimurac, T., Tachid, Y.: Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling. J. Nucl. Sci. Technol. 53, 592 (2016).10.1080/00223131.2015.1066719Search in Google Scholar
57. Silva, R. J., Nitsche, H.: Actinide environmental chemistry. Radiochim. Acta 70/71, 337 (1995).10.1524/ract.1995.7071.s1.377Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics
Articles in the same Issue
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics