Abstract
The purpose of this study is to demonstrate the feasibility of elemental analysis of sand samples by photon activation induced by high energy bremsstrahlung photons at an end point energy of 18 MeV from a clinical electron linear accelerator. The γ-ray spectra of the activated samples were collected using a high resolution spectrometer. Qualitative analysis of major and trace components of the samples (12 in total) was carried out whilst the spectra of eight of the samples were evaluated quantitatively. The contents of elements obtained by photon activation analysis were compared with values obtained by X-ray fluorescence.
Acknowledgements
This work was supported by the Research Fund of Akdeniz University, (Funder Id: http://dx.doi.org/10.13039/501100005703, Project Number: 2014.03.0121.005). The authors gratefully acknowledge the support of the Scientific Research Projects Coordination Unit of Akdeniz University. We would like to thank Cemil EKE and Şükriye EKE for supports and their help to collect sand samples. We would like to thank the Physics Department of Karadeniz Technical University for the XRF results of the eight sand samples.
References
1. Lutz, G. J., Boreni, R. J., Maddock, R. S., Wing, J.: Activation Analysis: A Bibliography Through 1971, National Bureau of Standards Technical Note 467, U.S. Goverment Printing Office, Washington, D.C. (1972).Search in Google Scholar
2. Segebade, C., Weise, H. P., Lutz, G. J.: Photon Activation Analysis. W. de Gruyter & Co, Berlin, New York (1988).10.1515/9783110864144Search in Google Scholar
3. Randa, Z., Kucera, J., Mizera, J., Frana, J.: Comparison of the role of photon and neutron activation analyses for elemental characterization of geological, biological and environmental materials. J. Radioanal. Nucl. Chem. 271(3), 589 (2007).10.1007/s10967-007-0311-1Search in Google Scholar
4. Kapitsa, S. P., Martinov, Yu, T., Sulin, V. V., Tsipenyuk, Yu, M.: Determination of gold and silver in ores and rocks with photon activation analysis using a microtron. Isotopenpraxis. 12, 386 (1976).Search in Google Scholar
5. Starovoitova, V., Segebade, C.: High intensity photon sources for activation analysis. J. Radioanal. Nucl. Chem. 310, 13 (2016).10.1007/s10967-016-4899-xSearch in Google Scholar
6. Sun, Z. J., Wells, D. P., Segebade, C., Maschner, H., Benson, B.: A provenance study of coffee by photon activation analysis. J. Radioanal. Nucl. Chem. 296, 293 (2013).10.1007/s10967-012-2021-6Search in Google Scholar
7. Green, J., Wells, D., Benson, B., Sun, Z., Maschner, H.: A priori method of using photon activation analysis to determine unknown trace element concentrations in NIST standards. AIP Conf. Proc. 1099, 919 (2009).10.1063/1.3120190Search in Google Scholar
8. Segebade, C., Starovoitova, V., Borgwardt, T., Wells, D.: Principles, methodologies, and applications of photon activation analysis: a review. J. Radioanal. Nucl. Chem. 312(3), 443 (2017).10.1007/s10967-017-5238-6Search in Google Scholar
9. Chattopadhyay, A., Jervis, R. E.: Multielement determination in market-garden soils by instrumental photon activation analysis. Anal. Chem. 46(12), 1630 (1974).10.1021/ac60348a059Search in Google Scholar
10. Segebade, C., Thummel, H.W., Heller, W.: Photon activation analysis of environmental water: studies of direct sample irradiation. J. Radioanal. Nucl. Chem. 167(2), 383 (1993).10.1007/BF02037196Search in Google Scholar
11. Masumoto, K., Ohtsuki, T., Miyamoto, Y., Zaidi, J. H., Kajikawa, A., Haba, H., Sakamoto, K.: Photon activation analysis of iodine, thallium and uranium in environmental materials. J. Radioanal. Nucl. Chem. 239(3), 495 (1999).10.1007/BF02349057Search in Google Scholar
12. Fukushima, M., Tamate, H., Sato, S., Terui, S., Mitsugashira, T.: Activation analysis of trace metals in several kinds of tissues of even-toed ungulates. J. Radioanal. Nucl. Chem. 239(3), 595 (1999).10.1007/BF02349076Search in Google Scholar
13. Fukushima, M., Tamate, H., Nakano, Y.: Activation analysis of traces several species of marine invertebrates as indicators of environmental conditions. J. Radioanal. Nucl. Chem. 244(1), 55 (2000).10.1023/A:1006714820622Search in Google Scholar
14. Ebihara, M., Oura, Y., Ishii, T., Setoguchi, M., Nakahara, H., Ohtsuki, T.: How effectively is the photon activation analysis applied to meteorite samples? J. Radioanal. Nucl. Chem. 244(3), 491 (2000).10.1023/A:1006766411304Search in Google Scholar
15. Randa, Z., Kučera J., Soukal, L.: Elemental characterization of the new Czech meteorite “Moravka” by neutron and photon activation analysis. J. Radioanal. Nucl. Chem. 257(2), 275 (2003).10.1023/A:1024767309558Search in Google Scholar
16. Ni, J., Xu, X. G., Block, R. C.: Photon activation analysis for river sediment sample using a 60 MeV linear electron accelerator. J. Radioanal. Nucl. Chem. 245(3), 501 (2000).10.1023/A:1006788622822Search in Google Scholar
17. Yagi, M., Masumoto, K.: Instrumental photon activation analysis of environmental materials using the internal standard method. J. Radioanal. Nucl. Chem. 109(1), 237 (1987).10.1007/BF02117540Search in Google Scholar
18. Mizera, J., Randa, Z.: Neutron and photon activation analyses in geochemical characterization of sediment profiles at the Jurassic–Cretaceous boundary. J. Radioanal. Nucl. Chem. 282, 53 (2009).10.1007/s10967-009-0187-3Search in Google Scholar
19. Randa, Z., Kucera, J., Soukal, L.: Possibilities of simultaneous determination of lead and thallium in environmental and biological samples by microtron photon activation analysis with radiochemical separation. J. Radioanal. Nucl. Chem. 248(2), 149 (2001).10.1023/A:1010658915730Search in Google Scholar
20. Randa, Z., Kucera, J.: Trace elements in higher fungi (mushrooms) determined by activation analysis. J. Radioanal. Nucl. Chem. 259(1), 99 (2004).10.1023/B:JRNC.0000015813.27926.32Search in Google Scholar
21. Chao, J. H., Chuang, C. Y., Yeh, A. A., Wu, J. W.: Relationship between radioactivity of radium and concentrations of barium and lead in hokutolite. Appl. Radiat. Isot. 67, 650 (2009).10.1016/j.apradiso.2008.12.012Search in Google Scholar PubMed
22. Chao, J. H., Liu, M. T., Yeh, S. A., Huang, S. S., Wu, J. M., Chang, Y. L., Hsu, F. Y., Chuang, C. Y., Liu, H. Y., Sun, Y. C.: Using medical accelerators and photon activation to determine Sr/Ca concentration ratios in teeth. Appl. Radiat. Isot. 67, 1121 (2009).10.1016/j.apradiso.2009.02.089Search in Google Scholar PubMed
23. Mizera, J., Randa, Z.: Instrumental neutron and photon activation analyses of selected geochemical reference materials. J. Radioanal. Nucl. Chem. 284, 157 (2010).10.1007/s10967-010-0447-2Search in Google Scholar
24. Oprea, C., Maslov, O. D., Gustova, M. V., Oprea, I. A., Mihul, A., Belov, A. G., Szalan-ski, P. J., Buzguta, V.: Photoneutron activation analysis applied for environmental researches. Rom. Rep. Phys. 63(2), 348 (2011).Search in Google Scholar
25. Kato, T., Morita, I., Sato, N.: Non-destructive photon-activation analysis of standard rocks with 30 MeV bremsstrahlung. J. Radioanal. Nucl. Chem. 18, 97 (1973).10.1007/BF02520694Search in Google Scholar
26. Alsufyani, S. J., Liegey, L. R., Starovoitova, V. N.: Gold bearing ore assays using 197Au(γ,n)196Au photonuclear reaction. J. Radioanal. Nucl. Chem. 302, 623 (2014).10.1007/s10967-014-3239-2Search in Google Scholar
27. Tickner, J., O’Dwyer, J., Roach, G., Smith, M., Haarlem, Y. V.: Analysis of precious metals at parts-per-billion levels in industrial applications. Radiat. Phys. Chem. 116, 43 (2015).10.1016/j.radphyschem.2015.01.006Search in Google Scholar
28. Randa, Z., Ulrych, J., Turek, K., Mihaljevic, M., Adamovic, J., Mizera, J.: Radiobarites from the Cenozoic volcanic region of the Bohemian Massif: radiochemical study, history, and lead isotopic composition. J. Radioanal. Nucl. Chem. 283, 89 (2010).10.1007/s10967-009-0095-6Search in Google Scholar
29. Starovoitova, V. N., Segebade, C.: Photon activation analysis as a tool for evidentiary sample identification: a feasibility study. J. Radioanal. Nucl. Chem. 311, 611 (2017).10.1007/s10967-016-4964-5Search in Google Scholar
30. Borgwardt, T. C., Wells, D. P., Pagnac, D. D., Sun, Z., Segebade, C. R.: A test of a non-consumptive nuclear forensics technique using photon activation analysis of fossils and source matrices. J. Paleontol. Tech. 19, 1 (2018).Search in Google Scholar
31. Email, I. V., Sani, N. A., Abdulsalam, A. K., Abdullahi, U. A.: Extraction and quantification of silicon from silica sand obtained from Zauma River, Zamfara State, Nigeria. Eur. Sci. J. 9(15), 160 (2013).Search in Google Scholar
32. Garzanti, E., Vermeesch, P., Ando, S., Vezzoli, G., Valagussa, M., Allen, K., Kadi, K. A., Al-Juboury, A. I. A.: Provenance and recycling of Arabian Desert sand. Earth-Sci. Rev. 120, 1 (2013).10.1016/j.earscirev.2013.01.005Search in Google Scholar
33. Mahmoud, H. H., Abdel-Lateef, A. M., Attiah, A. M.: Distribution of some elements in the Egyptian black sands from Abu Khashaba Beach Area. Journal of Analytical Sciences, Methods and Instrumentation. 3, 62 (2013).10.4236/jasmi.2013.31007Search in Google Scholar
34. Premaratne, W. A. P. J., Rowson, N. A.: The processing of beach sand from Sri Lanka for the recovery of titanium using magnetic separation. Phys. Sep. Sci. Eng. 12(1), 13 (2003).10.1080/1478647031000101232Search in Google Scholar
35. Suleman, N. M., ElAgib, I.: Quantitative and qualitative analysis of sand in Nafud Desert at Zilfi Province using (ICP-MS) spectroscopic technique. J. Eng. Appl. Sci. 2(1), 17 (2015).10.12816/0031285Search in Google Scholar
36. Eke, C., Boztosun, I.: Gamma-ray spectrometry for the self-attenuation correction factor of the sand samples from Antalya in Turkey. J. Radioanal. Nucl. Chem. 301(1), 103 (2014).10.1007/s10967-014-3145-7Search in Google Scholar
37. Eke, C., Boztosun, I., Dapo, H., Segebade, C., Bayram, E.: Determination of gamma-ray energies and half lives of platinum radio-isotopes by photon activation using a medical electron linear accelerator: a feasibility study. J. Radioanal. Nucl. Chem. 309(1), 79 (2016).10.1007/s10967-016-4804-7Search in Google Scholar
38. Schmitt, B. F., Segebade, C., Fusban, H. U.: Waste incineration asha versatile environmental reference material. J. Radioanal. Nucl. Chem. 60(1), 99 (1980).10.1007/BF02518287Search in Google Scholar
39. Maestro-32. Available at: http://www.orteconline.com/products/applicationsoftware/maestro-mca. (2017). Acquired 15 Feb 2017.Search in Google Scholar
40. Eke, C., Er, K., Segebade, C., Boztosun, I.: Study of filling material of dental composites: an analytical approach using radio-activation. Radiochim. Acta 106(1), 69 (2018).10.1515/ract-2017-2766Search in Google Scholar
41. ISO/GUM. Available at: http://www.bipm.org/en/publications/guides/gum.html. (2017). Acquired 17 Feb 2017.Search in Google Scholar
42. Currie, L. A.: Limits for qualitative detection and quantitative determination. Anal. Chem. 40, 586 (1968).10.1021/ac60259a007Search in Google Scholar
43. Dogan, M., Olgar, M. A., Cengiz, E., Tirasoglu, E.: Alloying effect on K shell X-ray fluorescence cross-sections and intensity ratios of Cu and Sn in Cu1Sn1-x alloys using the 59.5 keV gamma rays. Radiat. Phys. Chem. 126, 111 (2016).10.1016/j.radphyschem.2016.05.019Search in Google Scholar
44. Rousseau, R. M.: Detection limit and estimate of uncertainty of analytical XRF results. Rigaku J. 18(2), 33 (2001).Search in Google Scholar
45. Nudat.: National Nuclear Data Center (NNDC) in Brookhaven National Laboratory. Available at: http://www.nndc.bnl.gov/nudat2/. (2016). Acquired 15 Feb 2016.Search in Google Scholar
46. Oka, Y., Kato, T., Nomura, K., Saito, T.: Gamma-ray spectrometric study of the photo activation products with 20 MeV bremsstrahlung. J. Nucl. Sci. Technol. 4(7), 346 (1967).10.1080/18811248.1967.9732764Search in Google Scholar
47. Gamma-W. Available at: http://www.westmeier.com/3gammawfeatures.htm. (2016). Acquired 25 July 2016.Search in Google Scholar
48. Radford, D. C.: Notes on the use of the gf3. Available at: http://radware.phy.ornl.gov/gf3/gf3.html. (2000). Accessed 25 July 2016.Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics
Articles in the same Issue
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics