Startseite Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate

  • Noura Mossaed Saleh , Ghada Adel Mahmoud , AbdelRahman AbdelMonem Dahy , Soliman Abdel-Fadeel Soliman und Refaat Mohamed Mahfouz EMAIL logo
Veröffentlicht/Copyright: 14. November 2018

Abstract

Kinetics of dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate with 103 kGy total γ-ray dose absorbed in air atmosphere were studied by isoconversional nonisothermal method. The dehydration proceeds in two steps with the elimination of 0.8 and 0.4 mol of H2O, respectively. This result indicates that the investigated neodymium (III) acetate hydrate contains 1.2 mol of crystalline water in its structure. The dehydration reactions are best described by nucleation (A2 model) and gas diffusion (D4 model) for unirradiated and γ-ray irradiated samples, respectively. Analysis of the kinetic data using linear and nonlinear isoconversional methods showed that the apparent activation energy, Ea (kJ/mol) is dependent on the conversion degree, α, of the dehydration process. The Ea−α plots for both unirradiated and γ-ray irradiated neodymium (III) acetate hydrate showed that the dehydration is a complex process and contains multistep reactions. The results showed that γ-ray irradiation has a significant effect on the kinetics and thermodynamic parameters of the dehydration reaction. Powder X-ray diffraction showed that neodymium (III) acetate hydrate has a monoclinic system (SG P2/m) and no phase transformation was detected by γ-ray irradiation up to 103 kGy absorbed dose. The system maintains the same crystal structure before and after dehydration.

Acknowledgments

This work is a part of Noura M. Saleh M.Sc. thesis. The authors would like to thank Assiut University for the official technical and financial support.

References

1. Mahfouz, R. M., Al-Khamis, Kh. M., Siddiqui, M. R. H., Alhokbany, N. S., Warad, I., Al-Andis, N. M.: Kinetic studies of isothermal decomposition of unirradiated and γ irradiated gallium acetylacetonate: new route for the synthesis of gallium oxide nanoparticles. Prog. React. Kinet. Mech. 37, 249 (2012).10.3184/146867812X13377012276288Suche in Google Scholar

2. Mahfouz, R. M., Ahmed, G. A.-W., Alshammari, M. R.: Application of the model-free approach to the study of the nonisothermal decomposition of unirradiated and γ-irradiated hydrated gadolinium acetylacetonate. Radiat. Eff. Defects Solids 69(6), 490 (2014).10.1080/10420150.2013.877909Suche in Google Scholar

3. Mahfouz, R. M., Monshi, M. A. S., Abd El-Salam, N. M.: Kinetics of the thermal decomposition of γ-gadolinium acetate. Thermochim. Acta 383(1–2), 95 (2002).10.1016/S0040-6031(01)00682-7Suche in Google Scholar

4. Monshi, M. A. S., Abd El-Salam, N. M., Mahfouz, R. M.: Gamma irradiation effects on the thermal decomposition induction period in uranyl acetate. Thermochim. Acta 327, 139 (1999).10.1016/S0040-6031(98)00598-XSuche in Google Scholar

5. Al-Otaibi, A. M., Al-Wassil, A. I., Siddiqui, M. R. H., Mahfouz, R. M.: Kinetic analysis for the nonisothermal decomposition of unirradiated and γ-irradiated zirconium acetylacetonate. Prog. React. Kinet. Mech. 37(1), 59 (2012).10.3184/146867811X13095343745013Suche in Google Scholar

6. Mahfouz, R. M., Monshi, M. A. S., Alshehri, S. M., Abd El-Salam, N. M.: Isothermal decomposition of γ-irradiated samarium acetate. Radiat. Phys. Chem. 59, 381 (2000).10.1016/S0969-806X(00)00302-9Suche in Google Scholar

7. Jung, E., Yu, T., Kim, W.-S.: Synthesis of rare earth oxide nanoplates with single unit cell thickness using a thermal decomposition method. Korean J. Chem. Eng. 33(2), 683 (2016).10.1007/s11814-015-0144-5Suche in Google Scholar

8. Kepiński, L., Zawadzki, M., Miśta, W.: Hydrothermal synthesis of precursors of neodymium oxide nanoparticles. Solid State Sci. 6, 1327 (2004).10.1016/j.solidstatesciences.2004.07.003Suche in Google Scholar

9. Heer, S., Lehmann, O., Güdel, H.-U.: Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. 42(27), 3179 (2003).10.1002/anie.200351091Suche in Google Scholar

10. Karraker, D. G.: Coordination of lanthanide acetates. J. Inorg. Nucl. Chem. 31, 2815 (1969).10.1016/0022-1902(69)80198-3Suche in Google Scholar

11. Torres, S. G., Meyer, G.: Anhydrous neodymium (III) acetate. Z. Anorg. Allg. Chem. 634, 231 (2008).10.1002/zaac.200700407Suche in Google Scholar

12. Yugeng, Z., Guiwen, Z.: Synthesis and spectral studies of three neodymium acetate complexes. Synth. React. Inorg. Met.-Org. Chem. 25(3), 371 (1995).10.1080/15533179508218227Suche in Google Scholar

13. Vyazovkin, S., Wight, C. A.: Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340–341, 53 (1999).10.1016/S0040-6031(99)00253-1Suche in Google Scholar

14. Vyazovkin, S.: Model-free kinetics: staying free of multiplying entities without necessity. J. Therm. Anal. Calorim. 83(1), 45 (2006).10.1007/s10973-005-7044-6Suche in Google Scholar

15. Khawam, A., Flanagan, D. R.: Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B 110, 17315 (2006).10.1021/jp062746aSuche in Google Scholar PubMed

16. Vyazovkin, S., Dollimore, D.: Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Comp. Sci. 36, 42 (1996).10.1021/ci950062mSuche in Google Scholar

17. Farjas, J., Roura, P.: Isoconversional analysis of solid state transformations a critical review. Part II. Complex transformations. J. Therm. Anal. Calorim. 105, 767 (2011).10.1007/s10973-011-1447-3Suche in Google Scholar

18. Hussein, G. A. M.: Rare earth metal oxides, formation, characterization and catalytic activity Thermoanalytical and applied pyrolysis review. J. Anal. Appl. Pyrolysis 37, 111 (1996).10.1016/0165-2370(96)00941-2Suche in Google Scholar

19. Spinks, J. W. T., Woods, R.J. (Eds.), An Introduction to Radiation Chemistry (1990), third ed., John Wiley & Sons, New York.Suche in Google Scholar

20. Sharp, J. H., Bindley, W. G., Achar, B. N. N.: Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 49, 379 (1966).10.1111/j.1151-2916.1966.tb13289.xSuche in Google Scholar

21. Órfao, J. J. M.: Review and evaluation of the approximations to the temperature integral. AIChE J. 53(11), 2905 (2007).10.1002/aic.11296Suche in Google Scholar

22. Flynn, J. H., Wall, L. A.: General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Standards 70A, 487 (1966).10.6028/jres.070A.043Suche in Google Scholar

23. Ozawa. T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881 (1965).10.1246/bcsj.38.1881Suche in Google Scholar

24. Kissinger, H. E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).10.1021/ac60131a045Suche in Google Scholar

25. Akahira, T., Sunose, T.: Method of determining activation deterioration constant of electrical insulating materials. Res. Report Chiba Inst. Technol. (Sci. Technol.) 16, 22 (1971).Suche in Google Scholar

26. Agrawal, P. K.: Analysis of nonisothermal reaction kinetics. Part 1. Simple reactions. Thermochim. Acta 203, 93 (1992).10.1016/0040-6031(92)85187-ZSuche in Google Scholar

27. Tang, W., Liu, Y., Zhang, H., Wang, C.: New approximate formula for Arrhenius temperature integral. Thermochimica. Acta 408, 39 (2003).10.1016/S0040-6031(03)00310-1Suche in Google Scholar

28. Tang, W., Liu, Y., Zhang, H., Wang, Z., Wang, C.: New temperature integral approximate formula for the nonisothermal kinetic analysis. J. Therm. Anal. Calorim. 74(1), 309 (2003).10.1023/A:1026310710529Suche in Google Scholar

29. Doyle, C. D.: Estimating isothermal life from thermogravimetric data. J. App. Polym. Sci. 5, 285 (1961).10.1002/app.1962.070062406Suche in Google Scholar

30. Coats, A. W., Redfern, J. P.: Kinetic parameters from thermogravimetric data. Nature 201, 68 (1964).10.1038/201068a0Suche in Google Scholar

31. Vyazovkin, S.: A unified approach to kinetic processing of nonisothermal data. Int. J. Chem. Kinet. 28(2), 95 (1996).10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-GSuche in Google Scholar

32. Vyazovkin, S., Sbirrazzuoli, N.: Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 27(18), 1515 (2006).10.1002/marc.200600404Suche in Google Scholar

33. Cai, J., Yao, F., Yi, W., He, F.: New temperature integral approximation for nonisothermal kinetics. AlChE J. 52, 1554 (2006).10.1002/aic.10732Suche in Google Scholar

34. Gotor, F. J., Criado, J. M., Malek, J., Koga, N.: Kinetic analysis of solid-state Reactions: the University of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. 104, 10777 (2000).10.1021/jp0022205Suche in Google Scholar

35. Li, L., He, M., Zhang, A., Zhau, J.: A Study on nonisothermal kinetics of the thermal decompositions of β-manganese dioxide. Thermochim. Acta 523, 207 (2011).10.1016/j.tca.2011.05.026Suche in Google Scholar

36. Bamford, C. H., Tipper, C. F. H. (Eds.), Comprehensive Chemical Kinetics. Reaction in Solid State (1980), Elsevier Science Publication, Amsterdam, Vol. 22.Suche in Google Scholar

37. Śesták, J.: Thermodynamical Properties of Solids (1984), Academia, Prague.Suche in Google Scholar

38. L’vov, B. V.: Thermal decomposition of solids and melts. New thermochemical approach to the mechanism, kinetics and methodology (2007), Springer, Berlin, p 13.10.1007/978-1-4020-5672-7Suche in Google Scholar

39. Abu-Eittah, R. H., Zaki, N. G., Mohamed, M. M. A., Kamel, L. T.: Kinetics and thermodynamic parameters of the thermal decomposition of bis(imipraminium)tetrachlorocuprate, bis(imipraminium)tetrachloromercurate and imipraminium reineckate. J. Anal. Appl. Pyrolysis 77, 1 (2006).10.1016/j.jaap.2005.06.004Suche in Google Scholar

40. Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993). (also at http:/www.ill.eu/sites/fullprof).10.1016/0921-4526(93)90108-ISuche in Google Scholar

41. Vaḋura, L., Kvapil, J.: Growth and lattice parameters of the lanthanide carboxylates III. Hydrated neodymium acetate. Mater. Res. Bull. 8, 813 (1973).10.1016/0025-5408(73)90188-8Suche in Google Scholar

42. Yu, Q., Zhou, X., Liu, M., Chen, J., Zhou, Z., Yin, X., Cai, Y.: Syntheses, characterization, and luminescence of two lanthanide complexes [Ln2(acetate)6(H2O)4].4H2O(Ln=(Tb(1), Sm(2)). J. Rare Earths 26, 178 (2008).10.1016/S1002-0721(08)60061-7Suche in Google Scholar

43. Ferraro, J.R., Becker, N.: I.R. Investigation of several rare-earth acetates and formates. J. Inorg. Nucl. Chem. 32(5), 1495 (1970).10.1016/0022-1902(70)80637-6Suche in Google Scholar

44. Nyquist, R. A., Kagel, R. Q. (Eds.), Infrared Spectra of Inorganic Compounds (1971), Academic Press, New York.10.1016/B978-0-12-523450-4.50005-5Suche in Google Scholar

45. Patil, K. C., Chandrashekhar, G. V., George, M. V., Rao, C. N. R.: Infrared spectra and thermal decomposition of metal acetate and dicarboxylate. Can. J. Chem. 46, 257 (1968).10.1139/v68-040Suche in Google Scholar

46. Al-Resheedi, A. S., Al-Hokbany, N. S., Mahfouz, R. M.: Radiation induced synthesis of In2O3 nanoparticles-part ii: synthesis of In2O3 nanoparticles by thermal decomposition of unirradiated and γ-irradiated indium acetylacetonate. Mater. Res. 18(5), 931 (2015).10.1590/1516-1439.331814Suche in Google Scholar

47. Dienes, G. J., Vineyard, G. H. (Eds.), Radiation Effects in Solid (1957), Interscience Publishers, New York.Suche in Google Scholar

48. Culas, S., Samuel, J.: γ-irradiation effects on the nonisothermal decomposition of Strontium nitrate by model-free and model-fitting methods. Radiat. Phys. Chem. 86, 90 (2013).10.1016/j.radphyschem.2013.01.042Suche in Google Scholar

Received: 2018-06-02
Accepted: 2018-09-24
Published Online: 2018-11-14
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2998/html
Button zum nach oben scrollen