Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
-
Noura Mossaed Saleh
Abstract
Kinetics of dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate with 103 kGy total γ-ray dose absorbed in air atmosphere were studied by isoconversional nonisothermal method. The dehydration proceeds in two steps with the elimination of 0.8 and 0.4 mol of H2O, respectively. This result indicates that the investigated neodymium (III) acetate hydrate contains 1.2 mol of crystalline water in its structure. The dehydration reactions are best described by nucleation (A2 model) and gas diffusion (D4 model) for unirradiated and γ-ray irradiated samples, respectively. Analysis of the kinetic data using linear and nonlinear isoconversional methods showed that the apparent activation energy, Ea (kJ/mol) is dependent on the conversion degree, α, of the dehydration process. The Ea−α plots for both unirradiated and γ-ray irradiated neodymium (III) acetate hydrate showed that the dehydration is a complex process and contains multistep reactions. The results showed that γ-ray irradiation has a significant effect on the kinetics and thermodynamic parameters of the dehydration reaction. Powder X-ray diffraction showed that neodymium (III) acetate hydrate has a monoclinic system (SG P2/m) and no phase transformation was detected by γ-ray irradiation up to 103 kGy absorbed dose. The system maintains the same crystal structure before and after dehydration.
Acknowledgments
This work is a part of Noura M. Saleh M.Sc. thesis. The authors would like to thank Assiut University for the official technical and financial support.
References
1. Mahfouz, R. M., Al-Khamis, Kh. M., Siddiqui, M. R. H., Alhokbany, N. S., Warad, I., Al-Andis, N. M.: Kinetic studies of isothermal decomposition of unirradiated and γ irradiated gallium acetylacetonate: new route for the synthesis of gallium oxide nanoparticles. Prog. React. Kinet. Mech. 37, 249 (2012).10.3184/146867812X13377012276288Suche in Google Scholar
2. Mahfouz, R. M., Ahmed, G. A.-W., Alshammari, M. R.: Application of the model-free approach to the study of the nonisothermal decomposition of unirradiated and γ-irradiated hydrated gadolinium acetylacetonate. Radiat. Eff. Defects Solids 69(6), 490 (2014).10.1080/10420150.2013.877909Suche in Google Scholar
3. Mahfouz, R. M., Monshi, M. A. S., Abd El-Salam, N. M.: Kinetics of the thermal decomposition of γ-gadolinium acetate. Thermochim. Acta 383(1–2), 95 (2002).10.1016/S0040-6031(01)00682-7Suche in Google Scholar
4. Monshi, M. A. S., Abd El-Salam, N. M., Mahfouz, R. M.: Gamma irradiation effects on the thermal decomposition induction period in uranyl acetate. Thermochim. Acta 327, 139 (1999).10.1016/S0040-6031(98)00598-XSuche in Google Scholar
5. Al-Otaibi, A. M., Al-Wassil, A. I., Siddiqui, M. R. H., Mahfouz, R. M.: Kinetic analysis for the nonisothermal decomposition of unirradiated and γ-irradiated zirconium acetylacetonate. Prog. React. Kinet. Mech. 37(1), 59 (2012).10.3184/146867811X13095343745013Suche in Google Scholar
6. Mahfouz, R. M., Monshi, M. A. S., Alshehri, S. M., Abd El-Salam, N. M.: Isothermal decomposition of γ-irradiated samarium acetate. Radiat. Phys. Chem. 59, 381 (2000).10.1016/S0969-806X(00)00302-9Suche in Google Scholar
7. Jung, E., Yu, T., Kim, W.-S.: Synthesis of rare earth oxide nanoplates with single unit cell thickness using a thermal decomposition method. Korean J. Chem. Eng. 33(2), 683 (2016).10.1007/s11814-015-0144-5Suche in Google Scholar
8. Kepiński, L., Zawadzki, M., Miśta, W.: Hydrothermal synthesis of precursors of neodymium oxide nanoparticles. Solid State Sci. 6, 1327 (2004).10.1016/j.solidstatesciences.2004.07.003Suche in Google Scholar
9. Heer, S., Lehmann, O., Güdel, H.-U.: Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. 42(27), 3179 (2003).10.1002/anie.200351091Suche in Google Scholar
10. Karraker, D. G.: Coordination of lanthanide acetates. J. Inorg. Nucl. Chem. 31, 2815 (1969).10.1016/0022-1902(69)80198-3Suche in Google Scholar
11. Torres, S. G., Meyer, G.: Anhydrous neodymium (III) acetate. Z. Anorg. Allg. Chem. 634, 231 (2008).10.1002/zaac.200700407Suche in Google Scholar
12. Yugeng, Z., Guiwen, Z.: Synthesis and spectral studies of three neodymium acetate complexes. Synth. React. Inorg. Met.-Org. Chem. 25(3), 371 (1995).10.1080/15533179508218227Suche in Google Scholar
13. Vyazovkin, S., Wight, C. A.: Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340–341, 53 (1999).10.1016/S0040-6031(99)00253-1Suche in Google Scholar
14. Vyazovkin, S.: Model-free kinetics: staying free of multiplying entities without necessity. J. Therm. Anal. Calorim. 83(1), 45 (2006).10.1007/s10973-005-7044-6Suche in Google Scholar
15. Khawam, A., Flanagan, D. R.: Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B 110, 17315 (2006).10.1021/jp062746aSuche in Google Scholar PubMed
16. Vyazovkin, S., Dollimore, D.: Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Comp. Sci. 36, 42 (1996).10.1021/ci950062mSuche in Google Scholar
17. Farjas, J., Roura, P.: Isoconversional analysis of solid state transformations a critical review. Part II. Complex transformations. J. Therm. Anal. Calorim. 105, 767 (2011).10.1007/s10973-011-1447-3Suche in Google Scholar
18. Hussein, G. A. M.: Rare earth metal oxides, formation, characterization and catalytic activity Thermoanalytical and applied pyrolysis review. J. Anal. Appl. Pyrolysis 37, 111 (1996).10.1016/0165-2370(96)00941-2Suche in Google Scholar
19. Spinks, J. W. T., Woods, R.J. (Eds.), An Introduction to Radiation Chemistry (1990), third ed., John Wiley & Sons, New York.Suche in Google Scholar
20. Sharp, J. H., Bindley, W. G., Achar, B. N. N.: Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 49, 379 (1966).10.1111/j.1151-2916.1966.tb13289.xSuche in Google Scholar
21. Órfao, J. J. M.: Review and evaluation of the approximations to the temperature integral. AIChE J. 53(11), 2905 (2007).10.1002/aic.11296Suche in Google Scholar
22. Flynn, J. H., Wall, L. A.: General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Standards 70A, 487 (1966).10.6028/jres.070A.043Suche in Google Scholar
23. Ozawa. T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881 (1965).10.1246/bcsj.38.1881Suche in Google Scholar
24. Kissinger, H. E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).10.1021/ac60131a045Suche in Google Scholar
25. Akahira, T., Sunose, T.: Method of determining activation deterioration constant of electrical insulating materials. Res. Report Chiba Inst. Technol. (Sci. Technol.) 16, 22 (1971).Suche in Google Scholar
26. Agrawal, P. K.: Analysis of nonisothermal reaction kinetics. Part 1. Simple reactions. Thermochim. Acta 203, 93 (1992).10.1016/0040-6031(92)85187-ZSuche in Google Scholar
27. Tang, W., Liu, Y., Zhang, H., Wang, C.: New approximate formula for Arrhenius temperature integral. Thermochimica. Acta 408, 39 (2003).10.1016/S0040-6031(03)00310-1Suche in Google Scholar
28. Tang, W., Liu, Y., Zhang, H., Wang, Z., Wang, C.: New temperature integral approximate formula for the nonisothermal kinetic analysis. J. Therm. Anal. Calorim. 74(1), 309 (2003).10.1023/A:1026310710529Suche in Google Scholar
29. Doyle, C. D.: Estimating isothermal life from thermogravimetric data. J. App. Polym. Sci. 5, 285 (1961).10.1002/app.1962.070062406Suche in Google Scholar
30. Coats, A. W., Redfern, J. P.: Kinetic parameters from thermogravimetric data. Nature 201, 68 (1964).10.1038/201068a0Suche in Google Scholar
31. Vyazovkin, S.: A unified approach to kinetic processing of nonisothermal data. Int. J. Chem. Kinet. 28(2), 95 (1996).10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-GSuche in Google Scholar
32. Vyazovkin, S., Sbirrazzuoli, N.: Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 27(18), 1515 (2006).10.1002/marc.200600404Suche in Google Scholar
33. Cai, J., Yao, F., Yi, W., He, F.: New temperature integral approximation for nonisothermal kinetics. AlChE J. 52, 1554 (2006).10.1002/aic.10732Suche in Google Scholar
34. Gotor, F. J., Criado, J. M., Malek, J., Koga, N.: Kinetic analysis of solid-state Reactions: the University of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. 104, 10777 (2000).10.1021/jp0022205Suche in Google Scholar
35. Li, L., He, M., Zhang, A., Zhau, J.: A Study on nonisothermal kinetics of the thermal decompositions of β-manganese dioxide. Thermochim. Acta 523, 207 (2011).10.1016/j.tca.2011.05.026Suche in Google Scholar
36. Bamford, C. H., Tipper, C. F. H. (Eds.), Comprehensive Chemical Kinetics. Reaction in Solid State (1980), Elsevier Science Publication, Amsterdam, Vol. 22.Suche in Google Scholar
37. Śesták, J.: Thermodynamical Properties of Solids (1984), Academia, Prague.Suche in Google Scholar
38. L’vov, B. V.: Thermal decomposition of solids and melts. New thermochemical approach to the mechanism, kinetics and methodology (2007), Springer, Berlin, p 13.10.1007/978-1-4020-5672-7Suche in Google Scholar
39. Abu-Eittah, R. H., Zaki, N. G., Mohamed, M. M. A., Kamel, L. T.: Kinetics and thermodynamic parameters of the thermal decomposition of bis(imipraminium)tetrachlorocuprate, bis(imipraminium)tetrachloromercurate and imipraminium reineckate. J. Anal. Appl. Pyrolysis 77, 1 (2006).10.1016/j.jaap.2005.06.004Suche in Google Scholar
40. Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993). (also at http:/www.ill.eu/sites/fullprof).10.1016/0921-4526(93)90108-ISuche in Google Scholar
41. Vaḋura, L., Kvapil, J.: Growth and lattice parameters of the lanthanide carboxylates III. Hydrated neodymium acetate. Mater. Res. Bull. 8, 813 (1973).10.1016/0025-5408(73)90188-8Suche in Google Scholar
42. Yu, Q., Zhou, X., Liu, M., Chen, J., Zhou, Z., Yin, X., Cai, Y.: Syntheses, characterization, and luminescence of two lanthanide complexes [Ln2(acetate)6(H2O)4].4H2O(Ln=(Tb(1), Sm(2)). J. Rare Earths 26, 178 (2008).10.1016/S1002-0721(08)60061-7Suche in Google Scholar
43. Ferraro, J.R., Becker, N.: I.R. Investigation of several rare-earth acetates and formates. J. Inorg. Nucl. Chem. 32(5), 1495 (1970).10.1016/0022-1902(70)80637-6Suche in Google Scholar
44. Nyquist, R. A., Kagel, R. Q. (Eds.), Infrared Spectra of Inorganic Compounds (1971), Academic Press, New York.10.1016/B978-0-12-523450-4.50005-5Suche in Google Scholar
45. Patil, K. C., Chandrashekhar, G. V., George, M. V., Rao, C. N. R.: Infrared spectra and thermal decomposition of metal acetate and dicarboxylate. Can. J. Chem. 46, 257 (1968).10.1139/v68-040Suche in Google Scholar
46. Al-Resheedi, A. S., Al-Hokbany, N. S., Mahfouz, R. M.: Radiation induced synthesis of In2O3 nanoparticles-part ii: synthesis of In2O3 nanoparticles by thermal decomposition of unirradiated and γ-irradiated indium acetylacetonate. Mater. Res. 18(5), 931 (2015).10.1590/1516-1439.331814Suche in Google Scholar
47. Dienes, G. J., Vineyard, G. H. (Eds.), Radiation Effects in Solid (1957), Interscience Publishers, New York.Suche in Google Scholar
48. Culas, S., Samuel, J.: γ-irradiation effects on the nonisothermal decomposition of Strontium nitrate by model-free and model-fitting methods. Radiat. Phys. Chem. 86, 90 (2013).10.1016/j.radphyschem.2013.01.042Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics
Artikel in diesem Heft
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics