Abstract
Silica nanoparticles (SNPs) are known as intrinsic radiolabeling agents and offer a fast and reliable approach to deliver theranostic agents into targeted organs. Radiolabeled amorphous silica nanoparticles are of great interest to radiation oncology communities. In order to improve the performance of these nano materials in cancer diagnosis and treatment, their inherent properties, such as surface area and the ability to accumulate in cancer cells, should be enhanced. Pyridine functionalized mesoporous silica MCM-41 is known as a potential anticancer-drug delivery system with high suface area. In thiswork, in order to produce an image-guided drug delivery system for diagnostic applications, [68Ga] radionuclide was grafted on pyridine functionalized MCM-41. The nanoparticles were assessed with atomic force microscopy (AFM), paper chromatography, X-ray diffraction, FTIR spectroscopy, CHN and TGA/DTA analyses. The pharmacokinetic profile evaluation of the radiolabeled nano silica, [68Ga]-Py-Butyl@MCM-41, was done in Fibrosarcoma tumor-bearing mice. This labeled nanocomposite with appropriate blood circulation in body, high structural stability, high tumor/blood ID/g% ratio and fast excretion from the body can be proposed as an efficient nano engineered composite for upcoming tumor targeting/imaging nanotechnology-based applications.
References
1. Mrówczyński, R.: Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl. Mater. Interfaces 10, 7541 (2018).10.1021/acsami.7b08392Search in Google Scholar PubMed
2. Fazaeli, Y., Gholibeikian, M.: Synthesis and biological evaluation of the toxicity of grafted 2-mercaptobenzimidazole multi-walled carbon nanotubes (MWCNTs). Iran. J. Sci. Technol. 41, 145 (2017).10.1007/s40995-017-0197-xSearch in Google Scholar
3. Björnmalm, M., Thurecht, K. J., Michael, M., Scott, A. M., Caruso, F.: Bridging bio–nano science and cancer nanomedicine. ACS Nano 11, 9594 (2017).10.1021/acsnano.7b04855Search in Google Scholar PubMed
4. Cassano, D., Pocoví-Martínez, S., Voliani, V.: Ultrasmall-in-nano approach: enabling the translation of metal nanomaterials to clinics. Bioconjug. Chem. 29, 4 (2018).10.1021/acs.bioconjchem.7b00664Search in Google Scholar PubMed
5. Kwon, B., Han, E., Yang, W., Cho, W., Yoo, W., Hwang, J., Kwon, B.-M., Lee, D.: Nano-fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents. ACS Appl. Mater. Interfaces 8, 5887 (2016).10.1021/acsami.5b12523Search in Google Scholar PubMed
6. Fazaeli, Y., Akhavan, O., Rahighi, R., Aboudzadeh, M. R., Karimi, E., Afarideh, H.: In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 45, 196 (2014).10.1016/j.msec.2014.09.019Search in Google Scholar PubMed
7. Fazaeli, Y., Amini, M. M., Ashourion, H., Heydari, H., Majdabadi, A., Jalilian, A. R., Abolmaali, S.: Grafting of a novel gold(III) complex on nanoporous MCM-41 and evaluation of its toxicity in Saccharomyces cerevisiae. Int. J. Nanomedicine 6, 3251 (2011).10.2147/IJN.S25449Search in Google Scholar PubMed PubMed Central
8. Fazaeli, Y., Feizi, S., Jalilian, A. R., Hejrani, A.: Grafting of [64Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl. Radiat. Isot. 112, 13 (2016).10.1016/j.apradiso.2016.03.003Search in Google Scholar PubMed
9. Fazaeli, Y., Asgari, Z.: DTPA-functionalized nano-porous MCM-41 silica: a new potential nanoengineered labeled composite for diagnostic applications. Iran. J. Sci. Technol. 42, 497 (2018).10.1007/s40995-016-0047-2Search in Google Scholar
10. González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., Lozoya-Agulló, I., Bermejo, M., Martínez-Máñez, R., Sancenón, F.: Gated mesoporous silica nanocarriers for a “two-step” targeted system to colonic tissue. Mol. Pharm. 14, 4442 (2017).10.1021/acs.molpharmaceut.7b00565Search in Google Scholar PubMed
11. Chakraborty, I., Carrington, S. J., Hauser, J., Oliver, S. R. J., Mascharak, P. K.: Rapid eradication of human breast cancer cells through trackable light-triggered CO delivery by mesoporous silica nanoparticles packed with a designed photoCORM. Chem. Mater. 27, 8387 (2015).10.1021/acs.chemmater.5b03859Search in Google Scholar
12. Wang, J., Wang, Y., Liu, Q., Yang, L., Zhu, R., Yu, C., Wang, S.: Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl. Mater. Interfaces 8, 26511 (2016).10.1021/acsami.6b08400Search in Google Scholar PubMed
13. Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., Martínez-Máñez, R., Marcos, M. D., Amorós, P.: Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. Langmuir 31, 3753 (2015).10.1021/acs.langmuir.5b00139Search in Google Scholar PubMed
14. Argyo, C., Weiss, V., Bräuchle, C., Bein, T.: Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 26, 435 (2014).10.1021/cm402592tSearch in Google Scholar
15. Wang, Y., Wang, K., Zhang, R., Liu, X., Yan, X., Wang, J., Wagner, E., Huang, R.: Synthesis of core–shell graphitic carbon@silica nanospheres with dual-ordered mesopores for cancer-targeted photothermochemotherapy. ACS Nano 8, 7870 (2014).10.1021/nn5027214Search in Google Scholar PubMed
16. Huang, Y.-K., Su, C.-H., Chen, J.-J., Chang, C.-T., Tsai, Y.-H., Syu, S.-F., Tseng, T.-T., Yeh, C.-S.: Fabrication of silica-coated hollow carbon nanospheres encapsulating Fe3O4 cluster for magnetical and MR imaging guided NIR light triggering hyperthermia and ultrasound imaging. ACS Appl. Mater. Interfaces 8, 14470 (2016).10.1021/acsami.6b04759Search in Google Scholar PubMed
17. Mohapatra, S., Rout, S. R., Das, R. K., Nayak, S., Ghosh, S. K.: Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 32, 1611 (2016).10.1021/acs.langmuir.5b03898Search in Google Scholar PubMed
18. Szegedi, A., Popova, M., Goshev, I., Mihály, J.: Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J. Solid State Chem. 184, 1201 (2011).10.1016/j.jssc.2011.03.005Search in Google Scholar
19. Popova, M., Szegedi, A., Yoncheva, K., Konstantinov, S., Petrova, G. P., Aleksandrov, H. A., Vayssilov, G. N., Shestakova, P.: New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. Microporous Mesoporous Mater. 198, 247 (2014).10.1016/j.micromeso.2014.07.044Search in Google Scholar
20. Mebert, A. M., Baglole, C. J., Desimone, M. F., Maysinger, D.: Nanoengineered silica: properties, applications and toxicity. Food Chem. Toxicol. 109, 753 (2017).10.1016/j.fct.2017.05.054Search in Google Scholar PubMed
21. Zhang, Y., Ang, C. Y., Li, M., Tan, S. Y., Qu, Q., Luo, Z., Zhao, Y.: Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7, 18179 (2015).10.1021/acsami.5b05893Search in Google Scholar PubMed
22. Carmona, F. J., Jiménez-Amezcua, I., Rojas, S., Romão, C. C., Navarro, J. A. R., Maldonado, C. R., Barea, E.: Aluminum doped MCM-41 nanoparticles as platforms for the dual encapsulation of a CO-releasing molecule and cisplatin. Inorg. Chem. 56, 10474 (2017).10.1021/acs.inorgchem.7b01475Search in Google Scholar PubMed
23. Slowing, I., Trewyn, B. G., Lin, V. S. Y.: Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 128, 14792 (2006).10.1021/ja0645943Search in Google Scholar PubMed
24. Chen, F., Goel, S., Valdovinos, H. F., Luo, H., Hernandez, R., Barnhart, T. E., Cai, W.: In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9, 7950 (2015).10.1021/acsnano.5b00526Search in Google Scholar PubMed PubMed Central
25. Goel, S., Chen, F., Hong, H., Valdovinos, H. F., Hernandez, R., Shi, S., Barnhart, T. E., Cai, W.: VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl. Mater. Interfaces 6, 21677 (2014).10.1021/am506849pSearch in Google Scholar PubMed PubMed Central
26. Chen, F., Hong, H., Zhang, Y., Valdovinos, H. F., Shi, S., Kwon, G. S., Theuer, C. P., Barnhart, T. E., Cai, W.: In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7, 9027 (2013).10.1021/nn403617jSearch in Google Scholar PubMed PubMed Central
27. Ellison, P. A., Chen, F., Goel, S., Barnhart, T. E., Nickles, R. J., DeJesus, O. T., Cai, W.: Intrinsic and stable conjugation of thiolated mesoporous silica nanoparticles with radioarsenic. ACS Appl. Mater. Interfaces 9, 6772 (2017).10.1021/acsami.6b14049Search in Google Scholar PubMed PubMed Central
28. Migliari, S., Sammartano, A., Scarlattei, M., Serreli, G., Ghetti, C., Cidda, C., Baldari, G., Ortenzia, O., Ruffini, L.: Development and validation of a high-pressure liquid chromatography method for the determination of chemical purity and radiochemical purity of a [68Ga]-labeled glu-urea-lys(Ahx)-HBED-CC (positron emission tomography) tracer. ACS Omega 2, 7120 (2017).10.1021/acsomega.7b00677Search in Google Scholar PubMed PubMed Central
29. Ghosh, S. C., Hernandez Vargas, S., Rodriguez, M., Kossatz, S., Voss, J., Carmon, K. S., Reiner, T., Schonbrunn, A., Azhdarinia, A.: Synthesis of a fluorescently labeled 68Ga-DOTA-TOC analog for somatostatin receptor targeting. ACS Med. Chem. Lett. 8, 720 (2017).10.1021/acsmedchemlett.7b00125Search in Google Scholar PubMed PubMed Central
30. Fuchigami, T., Ono, H., Oyadomari, K., Iwatake, M., Hayasaka, D., Akbari, M., Yui, K., Nishi, K., Kudo, T., Yoshida, S., Haratake, M., Nakayama, M.: Development of a 68Ge/68Ga generator system using polysaccharide polymers and its application in PET imaging of tropical infectious diseases. ACS Omega 2, 1400 (2017).10.1021/acsomega.7b00147Search in Google Scholar PubMed PubMed Central
31. Kuo, H.-T., Pan, J., Lau, J., Zhang, C., Zeisler, J., Colpo, N., Bénard, F., Lin, K.-S.: Radiolabeled R954 derivatives for imaging bradykinin B1 receptor expression with positron emission tomography. Mol. Pharm. 14, 821 (2017).10.1021/acs.molpharmaceut.6b01055Search in Google Scholar PubMed
32. Poty, S., Gourni, E., Désogère, P., Boschetti, F., Goze, C., Maecke, H. R., Denat, F.: AMD3100: a versatile platform for CXCR4 targeting 68Ga-based radiopharmaceuticals. Bioconjug. Chem. 27, 752 (2016).10.1021/acs.bioconjchem.5b00689Search in Google Scholar PubMed
33. Li, D., Zhao, X., Zhang, L., Li, F., Ji, N., Gao, Z., Wang, J., Kang, P., Liu, Z., Shi, J., Chen, X., Zhu, Z.: 68Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study. Mol. Pharm. 11, 3923 (2014).10.1021/mp5003224Search in Google Scholar PubMed PubMed Central
34. Maschauer, S., Einsiedel, J., Hübner, H., Gmeiner, P., Prante, O.: 18F- and 68Ga-labeled neurotensin peptides for PET imaging of neurotensin receptor 1. J. Med. Chem. 59, 6480 (2016).10.1021/acs.jmedchem.6b00675Search in Google Scholar PubMed
35. Morfin, J.-F., Tóth, É.: Kinetics of Ga(NOTA) formation from weak Ga-citrate complexes. Inorg. Chem. 50, 10371 (2011).10.1021/ic201445eSearch in Google Scholar PubMed
36. Fazaeli, Y., Jalilian, A. R., Amini, M. M., Ardaneh, K., Rahiminejad, A., Bolourinovin, F., Moradkhani, S., Majdabadi, A.: Development of a 68Ga-fluorinated porphyrin complex as a possible PET imaging agent. Nucl. Med. Mol. Imaging 46, 20 (2012).10.1007/s13139-011-0109-5Search in Google Scholar PubMed PubMed Central
37. Fazaeli, Y., Rahighi, R., Tayyebi, A., Feizi, S.: Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging. Radiochimica Acta. 105, 65 (2017).10.1515/ract-2015-2556Search in Google Scholar
38. Fazaeli, Y., Zare, H., Karimi, S., Rahighi, R., Feizi, S.: Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl. Phys. A 123, 507 (2017).10.1007/s00339-017-1125-9Search in Google Scholar
39. Shaffer, T. M., Wall, M. A., Harmsen, S., Longo, V. A., Drain, C. M., Kircher, M. F., Grimm, J.: Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett. 15, 864 (2015).10.1021/nl503522ySearch in Google Scholar PubMed PubMed Central
40. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 (1992).10.1021/ja00053a020Search in Google Scholar
41. Fazaeli, Y., Amini, M. M., Mohajerani, E., Sharbatdaran, M., Torabi, N.: Grafting aluminum(III) 8-hydroxyquinoline derivatives on MCM-41 mesoporous silica for tuning of the light emitting color. J. Colloid Interface Sci. 346, 384 (2010).10.1016/j.jcis.2010.03.032Search in Google Scholar PubMed
42. Manzano, M., Aina, V., Areán, C. O., Balas, F., Cauda, V., Colilla, M., Delgado, M. R., Vallet-Regí, M.: Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem. Eng. J. 137, 30 (2008).10.1016/j.cej.2007.07.078Search in Google Scholar
43. Kapoor, S., Hegde, R., Bhattacharyya, A.: J. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J. Control. Release 140, 34 (2009).10.1016/j.jconrel.2009.07.015Search in Google Scholar
44. Guo, S., Li, D., Zhang, L., Li, J., Wang, E.: Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30, 1881 (2009).10.1016/j.biomaterials.2008.12.042Search in Google Scholar PubMed
45. Tang, Q., Xu, Y., Wu, D., Sun, Y.: A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J. Solid State Chem. 179, 1513 (2006).10.1016/j.jssc.2006.02.004Search in Google Scholar
46. Rámila, A., Muñoz, B., Pérez-Pariente, J., Vallet-Regí, M.: Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Technol. 26, 1199 (2003).10.1023/A:1020764319963Search in Google Scholar
47. Hudson, S. P., Padera, R. F., Langer, R., Kohane, D. S.: The biocompatibility of mesoporous silicates. Biomaterials 29, 4045 (2008).10.1016/j.biomaterials.2008.07.007Search in Google Scholar PubMed
48. Kohane, D. S., Tse, J. Y., Yeo, Y., Padera, R., Shubina, M., Langer, R.: Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J. Biomed. Mater. Res. A 77A, 351 (2006).10.1002/jbm.a.30654Search in Google Scholar
49. Tomazic-Jezic, V. J., Merritt, K., Umbreit, T. H.: Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. J. Biomed. Mater. Res. 55, 523 (2001).10.1002/1097-4636(20010615)55:4<523::AID-JBM1045>3.0.CO;2-GSearch in Google Scholar PubMed
50. Vallet-Regí, M.: Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem. Eur. J. 12, 5934 (2006).10.1002/chem.200600226Search in Google Scholar
51. Lu, J., Liong, M., Zink, J. I., Tamanoi, F.: Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3, 1341 (2007).10.1002/smll.200700005Search in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics
Articles in the same Issue
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics