Abstract
The exhaustion of petroleum reserves and the declining supply of conventional feedstock have forced refineries to use heavier crude oil in their production. Removing the undesirable components containing sulphur and metals in the atmospheric residue (AR) fraction requires extensive catalytic hydrotreating (HT) atmospheric residue desulphurization (ARDS) process. In this work, we endeavour to collect and present a comprehensive dataset to develop and simulate the ARDS HT model. This model is then used for an exergetic analysis to evaluate the performance of the ARDS HT model regarding the exergy destruction, the location of losses and exergetic efficiency. The massive exergy destruction is caused by significant differences in chemical exergy of source and product streams during separations, fractionation and reactions. The exergy destruction in the equipment independent of chemical exergies such as heat exchangers, pumps and compressors is relatively low. This exergetic analysis revealed that the majority of the processing equipment in the ARDS HT process performed satisfactorily. However, the remaining equipment requires improvement for its performance in regards to exergetic efficiency or/and avoidable exergetic losses. To enhance the efficiency of the equipment that is intensive in terms of exergy and energy use, the use of clean and high purity renewable hydrogen and several process rectification is proposed.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Fractionator feeds and products.
Properties | Unit | Stream | |||||
---|---|---|---|---|---|---|---|
60 | 62 | Top prod | Mid dist. | Bottom prod | |||
Temperature | C | 184.6200786 | 370 | 175.1618744 | 235.9451164 | 647.5861009 | |
Pressure | bar | 22 | 24.6 | 2.5 | 5.2 | 25 | |
Mass flow | kg/h | 193057.9089 | 5164664.55 | 222237.7165 | 30718.11072 | 5106266.631 | |
Std ideal liq vol flow | m3/h | 264.4914741 | 6398.927018 | 325.9291177 | 41.76464253 | 6297.227759 | |
Component Mass flow | kg/h | ||||||
H2O | H20 | 0 | 0 | 1489.062687 | 9.866227521 | 1.071085034 | |
Thiophene | C4H2S | 0 | 0 | 0 | 0 | 0 | |
H2S | H2S | 0 | 0 | 0 | 0 | 0 | |
Hydrogen | H2 | 39.96724231 | 1427.842291 | 1467.370637 | 0.436047985 | 0.002848485 | |
n-C30 | N-C30 | 23126.95859 | 4705781.144 | 1.15E-24 | 9.20E-26 | 4728908.103 | |
n-C20 | N-C20 | 11890.80709 | 339237.7811 | 7.77E-25 | 8.46E-19 | 351128.5882 | |
Naphthalene | C10H8 | 0 | 0 | 0 | 0 | 0 | |
n-Decane | C10H22 | 92377.48488 | 84428.4765 | 141716.1728 | 29581.23635 | 5508.55222 | |
n-Butane | C4H10 | 11887.04167 | 579.0547542 | 12443.46077 | 22.63555972 | 8.74E-05 | |
Methane | CH4 | 2.133430453 | 19.93951713 | 22.05970288 | 0.013233925 | 1.08E-05 | |
Propane | C3H8 | 0 | 0 | 0 | 0 | 0 | |
Pyridine | C5H5N | 0 | 0 | 0 | 0 | 0 | |
n-Pentane | C5H12 | 6617.253503 | 558.9065829 | 7151.0574 | 25.10159121 | 0.001095069 | |
Pyrrole | C4H5N | 0 | 0 | 0 | 0 | 0 | |
i-Pentane | C5H12 | 1177.282051 | 86.08222778 | 1259.530996 | 3.833193486 | 8.99E-05 | |
ThioNaphtene | C8H6S | 44.32752833 | 119.6284159 | 2.49E-05 | 0.000546656 | 163.9553726 | |
m-Xylene | C8H10 | 16601.65201 | 9133.844534 | 24820.50838 | 869.569174 | 45.41899516 | |
DiBZThiphene | C12H8S | 1.984350242 | 48.04112397 | 5.07E-25 | 7.50E-19 | 50.02547421 | |
Biphenyl | C12H10 | 1772.659116 | 6558.860146 | 5.68E-07 | 0.000174893 | 8331.519086 | |
Ammonia | NH3 | 0 | 0 | 0 | 0 | 0 | |
Cyclopentane | C5H10 | 0 | 0 | 0 | 0 | 0 | |
n-Hexane | C6H14 | 17918.63026 | 2604.07957 | 20401.41462 | 121.2538602 | 0.041343406 | |
Cyclohexane | C6H12 | 0 | 0 | 0 | 0 | 0 | |
1Mcycpentene | C6H10 | 0 | 0 | 0 | 0 | 0 | |
Benzene | C6H6 | 2010.372908 | 767.3966834 | 2751.546801 | 26.20943951 | 0.013350285 | |
Toluene | C7H8 | 23.8579955 | 25.79589011 | 48.80766961 | 0.825606232 | 0.02060977 | |
233M1-butene | C7H14 | 4510.26164 | 685.0955867 | 5156.130035 | 39.21410506 | 0.013086518 | |
Phenol | C6H6O | 358.8567375 | 407.5365065 | 752.0356937 | 9.616532248 | 4.74101812 | |
3-M-1-C4ol | C5H12O | 412.1054853 | 64.29900458 | 469.0558441 | 7.348565689 | 8.02E-05 | |
i-Butane | C4H10 | 2283.366196 | 7.086775295 | 2289.502467 | 0.950504627 | 2.49E-11 | |
DEAmine | C4H11NO2 | 0.108369663 | 0.642409711 | 1.40E-17 | 1.72E-12 | 0.750779374 | |
Carbon dioxide | CO2 | 0 | 0 | 0 | 0 | 0 | |
Vanadim | V | 0 | 105.0458635 | 6.76E-27 | 5.41E-28 | 105.0458635 | |
Vanadium sulphide | V2S3 | 0 | 0 | 0 | 0 | 0 | |
Nickel | N | 0 | 41.8145376 | 2.69E-27 | 2.15E-28 | 41.8145376 | |
Nickel sulphide | NIS | 0 | 0 | 0 | 0 | 0 | |
Asphaltenes | 0.797840165 | 11976.15551 | 1.89E-24 | 1.51E-25 | 11976.95335 | ||
Nitrogen | N2 | 0 | 0 | 0 | 0 | 0 | |
Oxygen | O2 | 0 | 0 | 0 | 0 | 0 | |
Carbon Monoxide | CO | 0 | 0 | 0 | 0 | 0 |
Mole fraction of component streams for reactors, separator, scrubber and fractionator (continued).
Properties | Stream | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 10 | 13 | 16 | 19 | 20 | 21 | 22 | 23_2 | 27 | 28 | 32 | 31 | 33 | 57 | 58 | 59 | 60 | |
Mole fraction | ||||||||||||||||||
1Mcycpentene | 0.00036 | 0.00036 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
233M1-butene | 0 | 0 | 0.00067 | 0.00064 | 0.00061 | 0.00058 | 0.00053 | 0.00067 | 0.00053 | 0.00051 | 9.3E-06 | 0 | 0 | 0 | 0.00104 | 0.00681 | 0.02918 | 0.02918 |
3-M-1-C4ol | 0.00071 | 0.00071 | 0.00069 | 0.00066 | 6.2E-05 | 6E-05 | 5.4E-05 | 6.7E-05 | 5.4E-05 | 5.2E-05 | 4.2E-07 | 0 | 0 | 0 | 1E-04 | 0.00069 | 0.00297 | 0.00297 |
Ammonia | 0 | 0 | 0 | 0.00016 | 0.00038 | 0.00047 | 0.00042 | 0.00018 | 0.00042 | 0.00043 | 0.00018 | 0 | 0 | 0 | 0.00033 | 0.00237 | 0 | 0 |
Asphalt* | 0.00023 | 0.00023 | 0.00022 | 0.00021 | 0.0002 | 2.1E-08 | 1.9E-08 | 0.00065 | 1.9E-08 | 1E-14 | 1.1E-28 | 0 | 0 | 0 | 9.3E-08 | 1.7E-07 | 7.4E-07 | 7.4E-07 |
Benzene | 0.00214 | 0.00214 | 0 | 0 | 0.00084 | 0.0008 | 0.00072 | 0.00093 | 0.00072 | 0.00072 | 0.00073 | 0 | 0 | 0 | 0.00124 | 0.00382 | 0.01635 | 0.01635 |
BiPhenyl | 0 | 0 | 0 | 0.00065 | 0.00062 | 0.00014 | 0.00012 | 0.00171 | 0.00012 | 7.6E-05 | 8.6E-09 | 0 | 0 | 0 | 0.00052 | 0.0017 | 0.0073 | 0.0073 |
CO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CO2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclohexane | 0.00071 | 0.00071 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclopentane | 0.00143 | 0.00143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DEAmine | 6.7E-08 | 6.7E-08 | 7.3E-08 | 7.8E-08 | 8.2E-08 | 1.6E-08 | 1.5E-08 | 2.3E-07 | 1.5E-08 | 3.9E-09 | 7.5E-16 | 1.5E-07 | 0 | 1.5E-07 | 6.2E-08 | 1.5E-07 | 6.5E-07 | 6.5E-07 |
DiBZThiphene | 0.00071 | 0.00071 | 0.00069 | 3.3E-06 | 3.1E-06 | 1.9E-07 | 1.7E-07 | 9.7E-06 | 1.7E-07 | 1.2E-08 | 3.2E-15 | 0 | 0 | 0 | 8E-07 | 1.6E-06 | 6.8E-06 | 6.8E-06 |
H2O | 0.26319 | 0.26321 | 0.25388 | 0.24146 | 0.23028 | 0.23598 | 0.31513 | 0.21735 | 0.31513 | 0.30771 | 0.00061 | 0 | 0 | 0.00601 | 0.41214 | 0.75967 | 0 | 0 |
H2S | 0.00132 | 0.00122 | 0.00479 | 0.00831 | 0.00803 | 0.00872 | 0.00778 | 0.00645 | 0.00778 | 0.00781 | 0.0103 | 0.00291 | 0.01032 | 0.00289 | 0.01232 | 0.00459 | 0 | 0 |
Hydrogen | 0.55609 | 0.55624 | 0.5683 | 0.58545 | 0.59044 | 0.73191 | 0.65612 | 0.26945 | 0.65612 | 0.66698 | 0.9855 | 0.99616 | 0.98718 | 0.99018 | 0.52317 | 0.00294 | 0.01259 | 0.01259 |
i-Butane | 1.5E-06 | 1.5E-06 | 1.7E-06 | 1.8E-06 | 0.00056 | 0.00077 | 0.00069 | 8.6E-05 | 0.00069 | 0.0007 | 3.5E-05 | 3.8E-06 | 3.5E-05 | 3.7E-06 | 0.00021 | 0.00582 | 0.02495 | 0.02495 |
i-Pentane | 0 | 0 | 0 | 0 | 0.00023 | 0.00025 | 0.00022 | 0.00017 | 0.00022 | 0.00022 | 2E-05 | 0 | 0 | 0 | 0.0003 | 0.00242 | 0.01036 | 0.01036 |
m-Xylene | 0 | 0 | 0 | 0.00294 | 0.00278 | 0.00177 | 0.00159 | 0.00507 | 0.00159 | 0.00146 | 8.2E-06 | 0 | 0 | 0 | 0.00481 | 0.02318 | 0.09933 | 0.09933 |
Methane | 0.00042 | 0.00042 | 0.00046 | 0.00049 | 0.00108 | 0.00132 | 0.00119 | 0.00052 | 0.00119 | 0.0012 | 0.00178 | 0.00093 | 0.00178 | 0.00092 | 0.00103 | 2E-05 | 8.4E-05 | 8.4E-05 |
n-Butane | 7.2E-11 | 7.2E-11 | 0.00345 | 0.00344 | 0.00326 | 0.00386 | 0.00346 | 0.0019 | 0.00346 | 0.00348 | 0.00069 | 1.6E-10 | 0.00069 | 1.6E-10 | 0.00351 | 0.03032 | 0.1299 | 0.1299 |
n-C20 | 0 | 0 | 0 | 0 | 0.01422 | 0.00077 | 0.00069 | 0.04474 | 0.00069 | 1.7E-05 | 8.7E-14 | 0 | 0 | 0 | 0.00328 | 0.00624 | 0.02673 | 0.02673 |
n-C30 | 0.16354 | 0.16355 | 0.15776 | 0.15004 | 0.128 | 0.00099 | 0.00088 | 0.4162 | 0.00088 | 6.5E-07 | 3.9E-18 | 0 | 0 | 0 | 0.00438 | 0.00811 | 0.03474 | 0.03474 |
n-Decane | 0 | 0 | 0 | 0 | 0.01422 | 0.00752 | 0.00674 | 0.02944 | 0.00674 | 0.00505 | 1.6E-06 | 0 | 0 | 0 | 0.02511 | 0.09624 | 0.41238 | 0.41238 |
n-Hexane | 0 | 0 | 0.0031 | 0.00295 | 0.0028 | 0.0027 | 0.00242 | 0.00302 | 0.00242 | 0.00236 | 5.5E-05 | 0 | 0 | 0 | 0.00461 | 0.03082 | 0.13207 | 0.13207 |
n-Pentane | 0 | 0 | 0.00138 | 0.00131 | 0.00124 | 0.00134 | 0.0012 | 0.00103 | 0.0012 | 0.00119 | 8.3E-05 | 0 | 0 | 0 | 0.00174 | 0.0136 | 0.05825 | 0.05825 |
Naphthalene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ni* | 2.3E-05 | 9.4E-06 | 9E-06 | 8.6E-06 | 8.2E-06 | 0 | 0 | 2.7E-05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NiS* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nitrogen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Oxygen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenol | 0.00107 | 0.00107 | 0.00103 | 0.00098 | 9.3E-05 | 4.2E-05 | 3.8E-05 | 0.00021 | 3.8E-05 | 3.3E-05 | 1.9E-08 | 0 | 0 | 0 | 0.00013 | 0.00057 | 0.00242 | 0.00242 |
Propane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyridine | 0.00026 | 0.00026 | 0.00025 | 0.00024 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyrrole | 0.00018 | 0.00018 | 0.00017 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ThioNaphtene | 0.00322 | 0.00322 | 0.0031 | 1.5E-05 | 1.4E-05 | 4.1E-06 | 3.7E-06 | 3.6E-05 | 3.7E-06 | 1.9E-06 | 1.1E-10 | 0 | 0 | 0 | 1.6E-05 | 4.9E-05 | 0.00021 | 0.00021 |
Thiophene | 0.00357 | 0.00357 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 0.00071 | 0.00071 | 1.6E-05 | 1.5E-05 | 1.4E-05 | 1.1E-05 | 0 | 2.1E-05 | 0 | 0 | 0 | 0 | 0 | 0 | 2.2E-05 | 3.8E-05 | 0.00016 | 0.00016 |
V* | 9.1E-05 | 2.7E-05 | 2.6E-05 | 2.5E-05 | 2.4E-05 | 0 | 0 | 7.7E-05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V2S3* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Properties | Stream | ||||||||
---|---|---|---|---|---|---|---|---|---|
62 | LAm | RAm | V2S3 NiS | Sour gas | Steam | TopP | MidD | BotP | |
Mole fraction | |||||||||
1Mcycpentene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
233M1-butene | 0.0005 | 0 | 0 | 0 | 8.1E-05 | 0 | 0.0191 | 0.00182 | 1.1E-08 |
3-M-1-C4ol | 5.3E-05 | 0 | 0 | 0 | 1E-06 | 0 | 0.00193 | 0.00038 | 7.3E-11 |
Ammonia | 0 | 0 | 0 | 0 | 0.00124 | 0 | 0 | 0 | 0 |
Asphalt* | 0.00126 | 0 | 0 | 0 | 5.8E-23 | 0 | 1E-30 | 1E-30 | 0.00139 |
Benzene | 0.00071 | 0 | 0 | 0 | 0.00069 | 0 | 0.01281 | 0.00153 | 1.4E-08 |
BiPhenyl | 0.00307 | 0 | 0 | 0 | 3.8E-08 | 0 | 1.3E-12 | 5.2E-09 | 0.00431 |
CO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CO2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclohexane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclopentane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DEAmine | 4.4E-07 | 0.15 | 0.95 | 0 | 1.8E-14 | 0 | 4.8E-23 | 7.4E-17 | 5.7E-07 |
DiBZThiphene | 1.9E-05 | 0 | 0 | 0 | 1.8E-13 | 0 | 1E-30 | 1.9E-23 | 2.2E-05 |
H2O | 0 | 0 | 0 | 0 | 0.00282 | 1 | 0.03006 | 0.00249 | 4.7E-06 |
H2S | 0 | 0 | 0.03126 | 0 | 0.02617 | 0 | 0 | 0 | 0 |
Hydrogen | 0.05112 | 0.85 | 0.01383 | 0 | 0.95853 | 0 | 0.26467 | 0.00098 | 1.1E-07 |
i-Butane | 8.8E-06 | 0 | 0.00018 | 0 | 0.00118 | 0 | 0.01432 | 7.4E-05 | 3.4E-17 |
Properties
|
Stream
|
||||||||
62
|
LAm
|
RAm
|
V2S3 NiS
|
Sour gas
|
Steam
|
TopP
|
MidD
|
BotP
|
|
i-Pentane | 8.6E-05 | 0 | 0 | 0 | 0.00018 | 0 | 0.00635 | 0.00024 | 9.9E-11 |
m-Xylene | 0.00621 | 0 | 0 | 0 | 5.2E-05 | 0 | 0.08501 | 0.03723 | 3.4E-05 |
Methane | 9E-05 | 0 | 0.0004 | 0 | 0.00188 | 0 | 0.0005 | 3.7E-06 | 5.4E-11 |
n-Butane | 0.00072 | 0 | 0.00433 | 0 | 0.00581 | 0 | 0.07785 | 0.00177 | 1.2E-10 |
n-C20 | 0.08666 | 0 | 0 | 0 | 8.5E-12 | 0 | 2.1E-34 | 1.4E-23 | 0.09908 |
n-C30 | 0.80333 | 0 | 0 | 0 | 5.9E-15 | 0 | 1E-30 | 1E-30 | 0.89175 |
n-Decane | 0.04283 | 0 | 0 | 0 | 1.7E-05 | 0 | 0.36218 | 0.94501 | 0.00309 |
n-Hexane | 0.00218 | 0 | 0 | 0 | 0.00055 | 0 | 0.08608 | 0.0064 | 3.8E-08 |
n-Pentane | 0.00056 | 0 | 0 | 0 | 0.00079 | 0 | 0.03604 | 0.00158 | 1.2E-09 |
Naphthalene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ni* | 5.1E-05 | 0 | 0 | 0 | 0 | 0 | 1.7E-32 | 1.7E-32 | 5.7E-05 |
NiS* | 0 | 0 | 0 | 0.30745 | 0 | 0 | 0 | 0 | 0 |
Nitrogen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Oxygen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenol | 0.00031 | 0 | 0 | 0 | 1.3E-07 | 0 | 0.00291 | 0.00046 | 4E-06 |
Propane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyridine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyrrole | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ThioNaphtene | 6.4E-05 | 0 | 0 | 0 | 1.5E-09 | 0 | 6.8E-11 | 1.9E-08 | 9.7E-05 |
Thiophene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 2E-05 | 0 | 0 | 0 | 2.9E-06 | 0 | 0.00019 | 4.1E-05 | 1.8E-08 |
V* | 0.00015 | 0 | 0 | 0 | 0 | 0 | 4.8E-32 | 4.8E-32 | 0.00016 |
V2S3* | 0 | 0 | 0 | 0.69255 | 0 | 0 | 0 | 0 | 0 |
Mole fraction of component streams for splitters.
Properties | Stream | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | 30 | 31 | 33 | 55 | 58 | 59 | 61 | 63 | SW-101 | SW-102 | SW-103 | SW-104 | SW-105 | |
Mole fraction | ||||||||||||||
1Mcycpentene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
233M1-butene | 0.00156 | 9.2E-06 | 0 | 0 | 0.00044 | 0.00681 | 0.02918 | 0.0005 | 0.02994 | 0.00072 | 0 | 0 | 0 | 0 |
3-M-1-C4ol | 0.00016 | 4.2E-07 | 0 | 0 | 4.6E-05 | 0.00069 | 0.00297 | 5.3E-05 | 0.00307 | 3.3E-05 | 0 | 0 | 0 | 0 |
Ammonia | 0.00094 | 0.00018 | 0 | 0 | 4.7E-05 | 0.00237 | 0 | 0 | 0.01815 | 0.01388 | 0 | 0 | 0.00309 | 0.00035 |
Asphalt* | 3.2E-14 | 1.1E-28 | 0 | 0 | 0.00109 | 1.7E-07 | 7.4E-07 | 0.00126 | 6.1E-13 | 8.9E-27 | 0 | 0 | 0 | 0 |
Benzene | 0.00069 | 0.00073 | 0 | 0 | 0.00061 | 0.00382 | 0.01635 | 0.00071 | 0.01336 | 0.05726 | 0 | 0 | 0 | 0 |
BiPhenyl | 0.00023 | 8.5E-09 | 0 | 0 | 0.00266 | 0.0017 | 0.0073 | 0.00307 | 0.0045 | 6.7E-07 | 0 | 0 | 0 | 0 |
CO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CO2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclohexane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclopentane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DEAmine | 1.2E-08 | 7.4E-16 | 0 | 1.5E-07 | 3.8E-07 | 1.5E-07 | 6.5E-07 | 4.4E-07 | 2.3E-07 | 5.8E-14 | 0 | 0 | 0 | 0 |
DiBZThiphene | 3.6E-08 | 3.1E-15 | 0 | 0 | 1.6E-05 | 1.6E-06 | 6.8E-06 | 1.9E-05 | 7E-07 | 2.5E-13 | 0 | 0 | 0 | 0 |
H2O | 0.94802 | 0.01161 | 0 | 0.00601 | 0.13262 | 0.75967 | 0 | 0 | 0 | 0.91492 | 1 | 1 | 0.99092 | 0.98787 |
H2S | 0.00263 | 0.01019 | 0.01032 | 0.00289 | 0.00158 | 0.00459 | 0 | 0 | 0.05055 | 0 | 0 | 0 | 0.00599 | 0.01178 |
Hydrogen | 0.00285 | 0.97466 | 0.98718 | 0.99018 | 0.04426 | 0.00294 | 0.01259 | 0.05112 | 0.05485 | 0 | 0 | 0 | 0 | 0 |
i-Butane | 0.00208 | 3.4E-05 | 3.5E-05 | 3.7E-06 | 7.6E-06 | 0.00582 | 0.02495 | 8.8E-06 | 0.03998 | 0 | 0 | 0 | 0 | 0 |
i-Pentane | 0.00064 | 2E-05 | 0 | 0 | 7.5E-05 | 0.00242 | 0.01036 | 8.6E-05 | 0.01237 | 0.00158 | 0 | 0 | 0 | 0 |
m-Xylene | 0.00449 | 8.1E-06 | 0 | 0 | 0.00538 | 0.02318 | 0.09933 | 0.00621 | 0.08631 | 0.00064 | 0 | 0 | 0 | 0 |
Methane | 9.5E-06 | 0.00176 | 0.00178 | 0.00092 | 7.8E-05 | 2E-05 | 8.4E-05 | 9E-05 | 0.00018 | 0 | 0 | 0 | 0 | 0 |
n-Butane | 0.0093 | 0.00068 | 0.00069 | 1.6E-10 | 0.00062 | 0.03032 | 0.1299 | 0.00072 | 0.17895 | 0 | 0 | 0 | 0 | 0 |
n-C20 | 5.2E-05 | 8.6E-14 | 0 | 0 | 0.07503 | 0.00624 | 0.02673 | 0.08666 | 0.00101 | 6.8E-12 | 0 | 0 | 0 | 0 |
n-C30 | 2E-06 | 3.9E-18 | 0 | 0 | 0.69548 | 0.00811 | 0.03474 | 0.80333 | 3.9E-05 | 3.1E-16 | 0 | 0 | 0 | 0 |
n-Decane | 0.01559 | 1.6E-06 | 0 | 0 | 0.03708 | 0.09624 | 0.41238 | 0.04283 | 0.29982 | 0.00013 | 0 | 0 | 0 | 0 |
n-Hexane | 0.00715 | 5.5E-05 | 0 | 0 | 0.00189 | 0.03082 | 0.13207 | 0.00218 | 0.13755 | 0.00432 | 0 | 0 | 0 | 0 |
n-Pentane | 0.0035 | 8.3E-05 | 0 | 0 | 0.00048 | 0.0136 | 0.05825 | 0.00056 | 0.06732 | 0.00651 | 0 | 0 | 0 | 0 |
Naphthalene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ni* | 0 | 0 | 0 | 0 | 4.5E-05 | 0 | 0 | 5.1E-05 | 0 | 0 | 0 | 0 | 0 | 0 |
NiS* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nitrogen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Oxygen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenol | 0.0001 | 1.9E-08 | 0 | 0 | 0.00027 | 0.00057 | 0.00242 | 0.00031 | 0.00195 | 1.5E-06 | 0 | 0 | 0 | 0 |
Propane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyridine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyrrole | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ThioNaphtene | 5.9E-06 | 1.1E-10 | 0 | 0 | 5.6E-05 | 4.9E-05 | 0.00021 | 6.4E-05 | 0.00011 | 8.3E-09 | 0 | 0 | 0 | 0 |
Thiophene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 0 | 0 | 0 | 0 | 1.7E-05 | 3.8E-05 | 0.00016 | 2E-05 | 0 | 0 | 0 | 0 | 0 | 0 |
V* | 0 | 0 | 0 | 0 | 0.00013 | 0 | 0 | 0.00015 | 0 | 0 | 0 | 0 | 0 | 0 |
V2S3* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mass flow of component streams for reactors, separator, scrubber and fractionator (continued).
Properties | Stream | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 10 | 13 | 16 | 19 | 20 | 21 | 22 | 23_2 | 27 | 28 | 31 | 32 | 33 | 57 | 58 | 59 | 60 | |
Mass flow | ||||||||||||||||||
1Mcycpentene | 2230.3 | 2230.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
233M1-butene | 0 | 0 | 5208.865 | 5208.865 | 5208.865 | 3442.073 | 3523.747 | 1766.792 | 3523.747 | 3334.233 | 40.8354 | 0 | 0 | 0 | 1271.21 | 4510.262 | 4510.262 | 4510.262 |
3-M-1-C4ol | 4786.39 | 4786.39 | 4786.39 | 4786.39 | 478.639 | 320.223 | 320.289 | 158.416 | 320.289 | 304.8922 | 1.676557 | 0 | 0 | 0 | 109.5138 | 412.1055 | 412.1055 | 412.1055 |
Ammonia | 0 | 0 | 0 | 231.1747 | 566.3781 | 485.4528 | 485.5667 | 80.92529 | 485.5667 | 482.5634 | 136.3287 | 0 | 0 | 0 | 71.10432 | 272.1139 | 0 | 0 |
Asphalt* | 11976.95 | 11976.95 | 11976.95 | 11976.95 | 11976.95 | 0.895021 | 0.895247 | 11976.06 | 0.895247 | 4.70E-07 | 3.52E-21 | 0 | 0 | 0 | 0.79784 | 0.79784 | 0.79784 | 0.79784 |
Benzene | 12723.71 | 12723.71 | 0 | 0 | 5725.668 | 3790.548 | 3791.317 | 1935.119 | 3791.317 | 3748.144 | 2578.548 | 0 | 0 | 0 | 1210.895 | 2010.373 | 2010.373 | 2010.373 |
BiPhenyl | 0 | 0 | 0 | 8331.465 | 8331.465 | 1294.806 | 1294.96 | 7036.659 | 1294.96 | 777.4837 | 0.059311 | 0 | 0 | 0 | 995.2751 | 1772.659 | 1772.659 | 1772.659 |
CO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CO2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclohexane | 4569.74 | 4569.74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclopentane | 7616.414 | 7616.414 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DEAmine | 0.535938 | 0.535938 | 0.607588 | 0.679223 | 0.750814 | 0.104804 | 0.10477 | 0.646009 | 0.10477 | 0.027366 | 3.53E-09 | 0 | 1.27934 | 1.27934 | 0.081004 | 0.10837 | 0.10837 | 0.10837 |
DiBZThiphene | 10005.05 | 10005.05 | 10005.05 | 50.02524 | 50.02524 | 2.131855 | 2.132093 | 47.89338 | 2.132093 | 0.144266 | 2.62E-08 | 0 | 0 | 0 | 1.840084 | 1.98435 | 1.98435 | 1.98435 |
H2O | 360302 | 360302 | 360302 | 360302 | 362502.9 | 257841.6 | 384034.9 | 104661.4 | 384034.9 | 368598.6 | 495.6526 | 0 | 0 | 9007.55 | 92671.97 | 92323.27 | 0 | 0 |
H2S | 3431.094 | 3147.372 | 12858.48 | 23444.74 | 23903.29 | 18029.97 | 17931.35 | 5873.32 | 17931.35 | 17702.82 | 15772.42 | 15772.42 | 8202.555 | 8202.555 | 5239.224 | 1055.534 | 0 | 0 |
Hydrogen | 85190.29 | 85207.08 | 90252.71 | 97761.6 | 104012.7 | 89492.48 | 89479.15 | 14520.2 | 89479.15 | 89406.92 | 89283.02 | 89283.02 | 166196.9 | 166196.9 | 13164.59 | 39.96724 | 39.96724 | 39.96724 |
i-Butane | 6.672441 | 6.672441 | 7.684302 | 8.700023 | 2850.141 | 2716.017 | 2716.699 | 134.1247 | 2716.699 | 2694.272 | 90.84179 | 90.84179 | 18.14303 | 18.14303 | 149.4651 | 2283.366 | 2283.366 | 2283.366 |
i-Pentane | 0 | 0 | 0 | 0 | 1420.156 | 1088.633 | 1088.861 | 331.5227 | 1088.861 | 1065.487 | 65.74802 | 0 | 0 | 0 | 268.815 | 1177.282 | 1177.282 | 1177.282 |
m-Xylene | 0 | 0 | 0 | 25811.12 | 25811.12 | 11415.9 | 11417.56 | 14395.22 | 11417.56 | 10305.57 | 39.16116 | 0 | 0 | 0 | 6373.361 | 16601.65 | 16601.65 | 16601.65 |
Methane | 517.4686 | 517.4686 | 586.5612 | 655.664 | 1508.732 | 1286.906 | 1286.887 | 221.8259 | 1286.887 | 1283.133 | 1279.845 | 1279.845 | 1234.206 | 1234.206 | 205.6404 | 2.13343 | 2.13343 | 2.13343 |
n-Butane | 0.000317 | 0.000317 | 15780.15 | 16569.16 | 16569.16 | 13615.67 | 13618.71 | 2953.492 | 13618.71 | 13443.97 | 1790.22 | 1790.22 | 0.000762 | 0.000762 | 2549.175 | 11887.04 | 11887.04 | 11887.04 |
n-C20 | 0 | 0 | 0 | 0 | 351126.8 | 13258.47 | 13260.22 | 337868.4 | 13260.22 | 319.3841 | 1.11E-06 | 0 | 0 | 0 | 11571.42 | 11890.81 | 11890.81 | 11890.81 |
n-C30 | 5254338 | 5254338 | 5254338 | 5254338 | 4728905 | 25293.7 | 25297.25 | 4703611 | 25297.25 | 18.36398 | 7.49E-11 | 0 | 0 | 0 | 23108.59 | 23126.96 | 23126.96 | 23126.96 |
n-Decane | 0 | 0 | 0 | 0 | 176824.8 | 64868.97 | 64877.32 | 111955.8 | 64877.32 | 47806.92 | 10.45248 | 0 | 0 | 0 | 44597.76 | 92377.48 | 92377.48 | 92377.48 |
n-Hexane | 0 | 0 | 21057.05 | 21057.05 | 21057.05 | 14091.29 | 14093.89 | 6965.76 | 14093.89 | 13496.04 | 214.8135 | 0 | 0 | 0 | 4959.527 | 17918.63 | 17918.63 | 17918.63 |
n-Pentane | 0 | 0 | 7835.344 | 7835.344 | 7835.344 | 5854.021 | 5855.211 | 1981.323 | 5855.211 | 5712.445 | 270.7115 | 0 | 0 | 0 | 1565.182 | 6617.254 | 6617.254 | 6617.254 |
Naphthalene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ni* | 104.7983 | 41.81454 | 41.81454 | 41.81454 | 41.81454 | 0 | 0 | 41.81454 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NiS* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nitrogen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Oxygen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenol | 7665.239 | 7665.239 | 7665.239 | 7665.239 | 766.5239 | 238.7485 | 238.7809 | 527.7753 | 238.7809 | 205.7711 | 0.079698 | 0 | 0 | 0 | 153.2486 | 358.8567 | 358.8567 | 358.8567 |
Propane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyridine | 1556.966 | 1556.966 | 1556.966 | 1556.966 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyrrole | 910.7308 | 910.7308 | 910.7308 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ThioNaphtene | 32790.95 | 32790.95 | 32790.95 | 163.9547 | 163.9547 | 33.14154 | 33.14475 | 130.8132 | 33.14475 | 16.94468 | 0.000646 | 0 | 0 | 0 | 27.38485 | 44.32753 | 44.32753 | 44.32753 |
Thiophene | 22842.18 | 22842.18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 5003.083 | 5003.083 | 115.0709 | 115.0709 | 115.0709 | 63.55591 | 0 | 51.515 | 0 | 0 | 0 | 0 | 0 | 0 | 25.71911 | 23.858 | 23.858 | 23.858 |
V* | 351.324 | 105.0459 | 105.0459 | 105.0459 | 105.0459 | 0 | 0 | 105.0459 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V2S3* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Properties | Stream | ||||||||
---|---|---|---|---|---|---|---|---|---|
62 | LAm | RAm | V2S3 NiS | Sour gas | Steam | TopP | MidD | BotP | |
Mass flow | |||||||||
1Mcycpentene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
233M1-butene | 685.0956 | 0 | 0 | 0 | 54.34655 | 0 | 5156.13 | 39.21411 | 0.013087 |
3-M-1-C4ol | 64.299 | 0 | 0 | 0 | 0.623953 | 0 | 469.0558 | 7.348566 | 8.02E-05 |
Ammonia | 0 | 0 | 0 | 0 | 145.2252 | 0 | 0 | 0 | 0 |
Asphalt* | 11976.16 | 0 | 0 | 0 | 2.73E-16 | 0 | 1.89E-24 | 1.51E-25 | 11976.95 |
Benzene | 767.3967 | 0 | 0 | 0 | 370.1183 | 0 | 2751.547 | 26.20944 | 0.01335 |
BiPhenyl | 6558.86 | 0 | 0 | 0 | 0.040414 | 0 | 5.68E-07 | 0.000175 | 8331.519 |
CO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CO2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclohexane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclopentane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DEAmine | 0.64241 | 709681.5 | 709680.2 | 0 | 1.31E-08 | 0 | 1.40E-17 | 1.72E-12 | 0.750779 |
DiBZThiphene | 48.04112 | 0 | 0 | 0 | 2.24E-07 | 0 | 5.07E-25 | 7.50E-19 | 50.02547 |
H2O | 0 | 0 | 0 | 0 | 348.7037 | 1500 | 1489.063 | 9.866228 | 1.071085 |
H2S | 0 | 0 | 7569.863 | 0 | 6114.094 | 0 | 0 | 0 | 0 |
Hydrogen | 1427.842 | 77112 | 198.0896 | 0 | 13248.52 | 0 | 1467.371 | 0.436048 | 0.002848 |
i-Butane | 7.086775 | 0 | 72.69876 | 0 | 469.5287 | 0 | 2289.502 | 0.950505 | 2.49E-11 |
Properties
|
Stream
|
||||||||
62
|
LAm
|
RAm
|
V2S3 NiS
|
Sour gas
|
Steam
|
TopP
|
MidD
|
BotP
|
|
i-Pentane | 86.08223 | 0 | 0 | 0 | 91.27145 | 0 | 1259.531 | 3.833193 | 8.99E-05 |
m-Xylene | 9133.845 | 0 | 0 | 0 | 38.11701 | 0 | 24820.51 | 869.5692 | 45.419 |
Methane | 19.93952 | 0 | 45.63848 | 0 | 206.795 | 0 | 22.0597 | 0.013234 | 1.08E-05 |
n-Butane | 579.0548 | 0 | 1790.219 | 0 | 2315.886 | 0 | 12443.46 | 22.63556 | 8.74E-05 |
n-C20 | 339237.8 | 0 | 0 | 0 | 1.64E-05 | 0 | 7.55E-25 | 8.46E-19 | 351128.6 |
n-C30 | 4705781 | 0 | 0 | 0 | 1.70E-08 | 0 | 1.16E-24 | 9.30E-26 | 4728908 |
n-Decane | 84428.48 | 0 | 0 | 0 | 16.74562 | 0 | 141716.2 | 29581.24 | 5508.552 |
n-Hexane | 2604.08 | 0 | 0 | 0 | 322.128 | 0 | 20401.41 | 121.2539 | 0.041343 |
n-Pentane | 558.9066 | 0 | 0 | 0 | 389.6621 | 0 | 7151.057 | 25.10159 | 0.001095 |
Naphthalene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ni* | 41.81454 | 0 | 0 | 0 | 0 | 0 | 2.69E-27 | 2.15E-28 | 41.81454 |
NiS* | 0 | 0 | 0 | 97.39337 | 0 | 0 | 0 | 0 | 0 |
Nitrogen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Oxygen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenol | 407.5365 | 0 | 0 | 0 | 0.083274 | 0 | 752.0357 | 9.616532 | 4.741018 |
Propane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyridine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyrrole | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ThioNaphtene | 119.6284 | 0 | 0 | 0 | 0.001362 | 0 | 2.49E-05 | 0.000547 | 163.9554 |
Thiophene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 25.79589 | 0 | 0 | 0 | 1.861113 | 0 | 48.80767 | 0.825606 | 0.02061 |
V* | 105.0459 | 0 | 0 | 0 | 0 | 0 | 6.76E-27 | 5.41E-28 | 105.0459 |
V2S3* | 0 | 0 | 0 | 478.8163 | 0 | 0 | 0 | 0 | 0 |
Mass flow of component streams for splitters.
Properties | Stream | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | 30 | 31 | 33 | 55 | 58 | 59 | 61 | 63 | SW-101 | SW-102 | SW-103 | SW-104 | SW-105 | |
Mass flow | ||||||||||||||
1Mcycpentene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
233M1-butene | 3293.397928 | 40.83539581 | 0 | 0 | 685.0955867 | 4510.26164 | 4510.26164 | 685.0955867 | 3293.397928 | 40.83539581 | 0 | 0 | 0 | 0 |
3-M-1-C4ol | 303.2156118 | 1.676557368 | 0 | 0 | 64.29900458 | 412.1054853 | 412.1054853 | 64.29900458 | 303.2156118 | 1.676557368 | 0 | 0 | 0 | 0 |
Ammonia | 346.2347694 | 136.3286646 | 0 | 0 | 12.82425802 | 272.1138557 | 0 | 0 | 346.2347694 | 136.3286646 | 0 | 0 | 272.1138557 | 12.82425802 |
Asphalt* | 4.70E-07 | 3.52E-21 | 0 | 0 | 11976.15551 | 0.797840165 | 0.797840165 | 11976.15551 | 4.70E-07 | 3.52E-21 | 0 | 0 | 0 | 0 |
Benzene | 1169.596364 | 2578.547973 | 0 | 0 | 767.3966834 | 2010.372908 | 2010.372908 | 767.3966834 | 1169.596364 | 2578.547973 | 0 | 0 | 0 | 0 |
BiPhenyl | 777.424402 | 0.05931147 | 0 | 0 | 6558.860146 | 1772.659116 | 1772.659116 | 6558.860146 | 777.424402 | 0.05931147 | 0 | 0 | 0 | 0 |
CO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CO2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclohexane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyclopentane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DEAmine | 0.027365966 | 3.53E-09 | 0 | 1.279340193 | 0.642409711 | 0.108369663 | 0.108369663 | 0.642409711 | 0.027365966 | 3.53E-09 | 0 | 0 | 0 | 0 |
DiBZThiphene | 0.144266353 | 2.62E-08 | 0 | 0 | 48.04112397 | 1.984350242 | 1.984350242 | 48.04112397 | 0.144266353 | 2.62E-08 | 0 | 0 | 0 | 0 |
H2O | 368102.9233 | 9503.202815 | 0 | 9007.55024 | 38234.83818 | 92323.26806 | 0 | 0 | 0 | 9503.202815 | 9007.55024 | 368102.9233 | 92323.26806 | 38234.83818 |
H2S | 1930.404165 | 15772.41805 | 15772.41805 | 8202.555491 | 862.6263941 | 1055.534278 | 0 | 0 | 1930.404165 | 0 | 0 | 0 | 1055.534278 | 862.6263941 |
Hydrogen | 123.9024259 | 89283.0174 | 89283.0174 | 166196.929 | 1427.842291 | 39.96724231 | 39.96724231 | 1427.842291 | 123.9024259 | 0 | 0 | 0 | 0 | 0 |
i-Butane | 2603.429835 | 90.84178962 | 90.84178962 | 18.1430332 | 7.086775295 | 2283.366196 | 2283.366196 | 7.086775295 | 2603.429835 | 0 | 0 | 0 | 0 | 0 |
i-Pentane | 999.7384881 | 65.74801887 | 0 | 0 | 86.08222778 | 1177.282051 | 1177.282051 | 86.08222778 | 999.7384881 | 65.74801887 | 0 | 0 | 0 | 0 |
m-Xylene | 10266.40785 | 39.16115698 | 0 | 0 | 9133.844534 | 16601.65201 | 16601.65201 | 9133.844534 | 10266.40785 | 39.16115698 | 0 | 0 | 0 | 0 |
Methane | 3.288095639 | 1279.844627 | 1279.844627 | 1234.206143 | 19.93951713 | 2.133430453 | 2.133430453 | 19.93951713 | 3.288095639 | 0 | 0 | 0 | 0 | 0 |
n-Butane | 11653.75261 | 1790.219711 | 1790.219711 | 0.000761818 | 579.0547542 | 11887.04167 | 11887.04167 | 579.0547542 | 11653.75261 | 0 | 0 | 0 | 0 | 0 |
n-C20 | 319.3840941 | 1.11E-06 | 0 | 0 | 339237.7811 | 11890.80709 | 11890.80709 | 339237.7811 | 319.3840941 | 1.11E-06 | 0 | 0 | 0 | 0 |
n-C30 | 18.36397528 | 7.49E-11 | 0 | 0 | 4705781.144 | 23126.95859 | 23126.95859 | 4705781.144 | 18.36397528 | 7.49E-11 | 0 | 0 | 0 | 0 |
n-Decane | 47796.46881 | 10.45247532 | 0 | 0 | 84428.4765 | 92377.48488 | 92377.48488 | 84428.4765 | 47796.46881 | 10.45247532 | 0 | 0 | 0 | 0 |
n-Hexane | 13281.23103 | 214.8135076 | 0 | 0 | 2604.07957 | 17918.63026 | 17918.63026 | 2604.07957 | 13281.23103 | 214.8135076 | 0 | 0 | 0 | 0 |
n-Pentane | 5441.733822 | 270.7114955 | 0 | 0 | 558.9065829 | 6617.253503 | 6617.253503 | 558.9065829 | 5441.733822 | 270.7114955 | 0 | 0 | 0 | 0 |
Naphthalene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ni* | 0 | 0 | 0 | 0 | 41.8145376 | 0 | 0 | 41.8145376 | 0 | 0 | 0 | 0 | 0 | 0 |
NiS* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Nitrogen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Oxygen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Phenol | 205.6913972 | 0.079697786 | 0 | 0 | 407.5365065 | 358.8567375 | 358.8567375 | 407.5365065 | 205.6913972 | 0.079697786 | 0 | 0 | 0 | 0 |
Propane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyridine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pyrrole | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ThioNaphtene | 16.94403721 | 0.000645856 | 0 | 0 | 119.6284159 | 44.32752833 | 44.32752833 | 119.6284159 | 16.94403721 | 0.000645856 | 0 | 0 | 0 | 0 |
Thiophene | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 0 | 0 | 0 | 0 | 25.79589011 | 23.8579955 | 23.8579955 | 25.79589011 | 0 | 0 | 0 | 0 | 0 | 0 |
V* | 0 | 0 | 0 | 0 | 105.0458635 | 0 | 0 | 105.0458635 | 0 | 0 | 0 | 0 | 0 | 0 |
V2S3* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Standard chemical exergy of component fraction.
Compound | kJ/kg | Source |
---|---|---|
H2O-water | 173.19 | Kotas |
Thiophene | 33,877.17 | * |
H2S | 23,826.29 | * |
Hydrogen | 117,111.62 | * |
n-C30 | 89,087.96 | * |
n-C20 | 47,031.22 | * |
Naphthalene | 40,968.85 | * |
n-Decane | 47,438.24 | * |
n-Butane | 48,245.13 | * |
Methane | 51,811.08 | * |
Propane | 48,819.65 | * |
Pyridine | 35,796.75 | Khosravi |
n-Pentane | 47,973.00 | * |
Pyrrole | 35,329.05 | Peters J.F |
i-Pentane | 47,973.00 | * |
ThioNaphtene | 34,015.39 | Bejan |
m-Xylene | 43,075.00 | * |
DiBZThiphene | 38,241.90 | Bejan |
Biphenyl | 40,855.35 | Khosravi |
Ammonia | 19,841.46 | * |
Cyclopentane | 46,597.70 | * |
n-Hexane | 47,790.67 | * |
Cyclohexane | 46,510.22 | * |
1Mcycpentene | 47,189.29 | Kotas |
Benzene | 42,199.46 | * |
Toluene | 42,896.85 | * |
233M1-butene | 46,573.75 | Kotas |
Phenol | 33,217.59 | * |
3-M-1-C4ol | 37,568.92 | * |
i-Butane | 47,568.97 | * |
DEAmine | 27,055.30 | Bejan |
CO2 | 442.63 | * |
Vanadium | 14,141.85 | * |
Vanadium sulphide | 10,810.08 | Bejan |
Nickel | 3,964.70 | * |
Nickel sulphide | 8,404.73 | * |
Nitrogen | 25.70 | * |
Oxygen | 124.06 | * |
Carbon dioxide | 9,807.25 | * |
Stream properties, physical exergy and chemical exergy.
Properties | |||||||
---|---|---|---|---|---|---|---|
Stream | Temp. | Pressure | Molar flow | Mass flow | Mass exergy | Phy. exergy | Che. exergya |
C | Bar | kgmole/h | kg/s | kJ/kg | MW | MW | |
FStock | 235.01 | 8.6 | 13600.00 | 1494.30 | 10.30 | 15.39 | |
1 | 242.80 | 8.5 | 13600.00 | 1494.30 | 17.97 | 26.85 | |
2 | 250.91 | 130.6 | 13600.00 | 1494.30 | 9.18 | 13.72 | |
3 | 38.00 | 130.6 | 20000.00 | 100.08 | 14.26 | 1.43 | |
4 | 232.24 | 130.6 | 33600.00 | 1594.38 | 5.65 | 9.01 | |
5 | 370.00 | 130.6 | 33600.00 | 1594.38 | 205.06 | 326.94 | |
6 | 360.58 | 130 | 75990.14 | 1619.14 | 275.20 | 445.59 | 22792.87 |
7 | 360.61 | 130 | 48396.77 | 99.71 | 2118.73 | 211.25 | |
8 | 360.61 | 130 | 27590.95 | 1519.44 | 151.57 | 230.30 | |
9 | 356.00 | 130 | 27587.46 | 1519.28 | 143.49 | 218.00 | |
10 | 356.71 | 130 | 75984.23 | 1618.98 | 267.73 | 433.45 | 22795.29 |
11 | 362.31 | 129 | 51677.70 | 107.82 | 2099.68 | 226.40 | |
12 | 362.31 | 129 | 27098.60 | 1513.89 | 154.50 | 233.89 | |
13 | 362.31 | 129 | 78776.29 | 1621.72 | 286.55 | 464.70 | 22168.65 |
14 | 363.42 | 128 | 56223.25 | 118.05 | 2084.44 | 246.08 | |
15 | 363.42 | 128 | 26606.22 | 1506.39 | 156.49 | 235.73 | |
16 | 363.42 | 128 | 82829.47 | 1624.45 | 299.41 | 486.37 | 21360.2 |
17 | 366.89 | 127 | 60651.40 | 146.81 | 1847.07 | 271.17 | |
18 | 366.89 | 127 | 26730.05 | 1480.37 | 158.94 | 235.29 | 2131.214 |
19 | 366.89 | 127 | 87381.45 | 1627.18 | 314.15 | 511.18 | 17063.8 |
20 | 366.89 | 127 | 60651.40 | 146.81 | 1847.07 | 271.17 | |
21 | 361.50 | 127 | 67647.12 | 181.85 | 1683.14 | 306.07 | |
22 | 366.89 | 127 | 26730.05 | 1480.37 | 158.94 | 235.29 | 48778.73 |
23 | 320.00 | 124 | 67647.12 | 181.85 | 1584.03 | 288.05 | |
23_1 | 280.00 | 124 | 67647.12 | 181.85 | 1492.61 | 271.43 | |
23_2 | 260.00 | 124 | 67647.12 | 181.85 | 1433.80 | 260.73 | 1906.627 |
24 | 260.00 | 124 | 1154.97 | 20.53 | 40.46 | 0.83 | 62.73197 |
25 | 260.00 | 124 | 66492.15 | 161.31 | 1609.32 | 259.60 | 1933.66 |
26 | 250.00 | 120 | 66492.15 | 161.31 | 1576.08 | 254.24 | |
27 | 40.50 | 120 | 66492.15 | 161.31 | 925.36 | 149.27 | 1933.66 |
28 | 40.50 | 120 | 44938.71 | 31.13 | 4749.67 | 147.86 | 2863.126 |
29 | 40.50 | 120 | 21553.44 | 130.18 | 24.31 | 3.16 | 17.64184 |
30 | 40.33 | 120 | 45438.71 | 33.63 | 4458.19 | 149.94 | 2831.272 |
32 | 55.45 | 95 | 82756.89 | 48.79 | 5322.68 | 259.71 | 2868.038 |
31 | 38.00 | 122 | 44862.14 | 30.06 | 4926.63 | 148.09 | 5385.802 |
33 | 52.88 | 95 | 83256.89 | 51.29 | 5101.99 | 261.70 | 5353.111 |
34 | 50.00 | 96.5 | 82756.89 | 48.79 | 5334.77 | 260.30 | 5385.802 |
35 | 50.00 | 96.5 | 48619.67 | 28.67 | 5334.77 | 152.92 | |
36 | 89.06 | 130 | 48619.67 | 28.67 | 5750.60 | 164.84 | |
37 | 89.06 | 130 | 29171.80 | 17.20 | 5750.60 | 98.91 | |
38 | 89.25 | 130 | 36871.80 | 21.51 | 5811.96 | 125.02 | |
39 | 117.57 | 128 | 36871.80 | 21.51 | 5873.89 | 126.36 | |
39_1 | 194.05 | 126 | 36871.80 | 21.51 | 6172.91 | 132.79 | |
40 | 305.62 | 124 | 36871.80 | 21.51 | 6813.85 | 146.58 | |
40_1 | 342.05 | 120 | 36871.80 | 21.51 | 7029.00 | 151.20 | |
41 | 89.06 | 130 | 19447.87 | 11.47 | 5750.60 | 65.94 | |
42 | 360.00 | 130 | 19447.87 | 11.47 | 7178.81 | 82.31 | |
43 | 360.00 | 130 | 4634.82 | 2.73 | 7178.81 | 19.62 | 301.3643 |
44 | 360.00 | 130 | 14813.05 | 8.73 | 7178.81 | 62.70 | |
45 | 360.00 | 130 | 4634.86 | 2.73 | 7178.81 | 19.62 | 301.5873 |
46 | 360.00 | 130 | 10178.20 | 6.00 | 7178.81 | 43.08 | |
47 | 360.00 | 130 | 4634.85 | 2.73 | 7178.81 | 19.62 | 301.6093 |
48 | 360.00 | 130 | 5543.35 | 3.27 | 7178.81 | 23.46 | |
49 | 360.00 | 130 | 5542.87 | 3.27 | 7178.84 | 23.46 | |
50 | 460.00 | 130 | 36871.80 | 21.51 | 8045.30 | 173.07 | |
51 | 365.04 | 124 | 27885.02 | 1500.90 | 159.81 | 239.86 | |
51_1 | 357.11 | 120 | 27885.02 | 1500.90 | 147.22 | 220.96 | |
52 | 355.00 | 118 | 27885.02 | 1500.90 | 144.51 | 216.90 | |
53 | 348.03 | 24.5 | 27885.02 | 1500.90 | 177.87 | 266.97 | 47334.65 |
54 | 348.03 | 24.5 | 11881.65 | 55.41 | 833.06 | 46.16 | 253.1855 |
55 | 348.03 | 24.5 | 16003.37 | 1445.49 | 150.23 | 217.16 | 81379.62 |
56 | 309.72 | 24.5 | 12481.65 | 58.41 | 766.21 | 44.76 | |
57 | 220.00 | 23.5 | 12481.65 | 58.41 | 612.53 | 35.78 | 240.8149 |
58 | 40.50 | 23.5 | 6746.09 | 79.64 | 55.37 | 4.41 | 141.6837 |
59 | 40.00 | 24 | 1574.37 | 53.63 | 81.27 | 4.36 | 610.2529 |
60 | 184.62 | 22 | 1574.37 | 53.63 | 88.06 | 4.72 | 610.2047 |
61 | 356.00 | 24.6 | 13854.93 | 1434.63 | 160.31 | 229.99 | 94086.17 |
62 | 370.00 | 24.6 | 13854.93 | 1434.63 | 183.69 | 263.52 | 94085.94 |
63 | 40.00 | 120 | 1120.42 | 27.93 | 156.49 | 4.37 | 60.86441 |
64 | 39.44 | 23.5 | 1120.42 | 27.93 | 99.05 | 2.77 | 261.4168 |
H2 make-up | 90.00 | 130 | 7700.00 | 4.31 | 6056.74 | 26.12 | |
LAm | 55.00 | 100 | 45000.00 | 218.55 | 378.01 | 82.62 | 2927.318 |
RAm | 41.64 | 100 | 7105.26 | 199.82 | 163.56 | 32.68 | 5068.333 |
V2S3 NiS | 356.00 | 130 | 3.49 | 0.16 | 453.07 | 0.07 | 1.064962 |
Sour gas | 40.50 | 23.5 | 6855.98 | 6.70 | 2216.73 | 14.86 | 414.2157 |
SW-101 | 38.00 | 122 | 576.56 | 3.57 | 40.12 | 0.14 | 1.865941 |
SW-102 | 50.00 | 96.5 | 500.00 | 2.50 | 13.88 | 0.03 | 0.124998 |
SW-103 | 40.00 | 120 | 20433.02 | 102.25 | 13.58 | 1.39 | 5.105746 |
SW-104 | 40.00 | 24 | 5171.72 | 26.01 | 3.70 | 0.10 | 1.290925 |
SW-105 | 356.00 | 24.6 | 2148.44 | 10.86 | 1078.64 | 11.72 | 0.572351 |
WW-100 | 370.00 | 127 | 7001.00 | 35.03 | 1261.50 | 44.20 | |
WW-101 | 30.00 | 125 | 500.00 | 2.50 | 12.68 | 0.03 | |
WW-102 | 32.00 | 125 | 500.00 | 2.50 | 12.86 | 0.03 | |
WW-103 | 80.00 | 125 | 600.00 | 3.00 | 31.46 | 0.09 | |
Steam | 370.00 | 30 | 83.26 | 0.42 | 1141.88 | 0.48 | 0.020816 |
Top Prod | 175.16 | 2.5 | 2750.05 | 61.73 | 71.71 | 4.43 | 755.7515 |
Mid. Dist. | 235.95 | 5.2 | 220.00 | 8.53 | 15.49 | 0.13 | 368.7781 |
Bot. Prod. | 647.59 | 25 | 12542.52 | 1418.41 | 841.92 | 1194.19 | 104954.8 |
-
a Streams with empty chemical exergy values are not included. These values does not affects the exergetic analysis of equipment that not involved in chemical reactions, separations or phase changes.
The physical exergy is calculated as Mass exergy x Mass flow. These two variables are obtained directly from the simulated model in Aspen HYSYS V10.
The streams component mole fraction and mass flow used to calculate the chemical exergy for reactors, separators, fractionator, scrubber and splitters are listed in Table A1–A6.
Exergy destruction and exergy efficiency.
Equipment | Exergy destruction | Exergy efficiency |
---|---|---|
P-101 |
|
|
FH-100 |
|
|
R-100 |
|
|
R-101 |
|
|
R-102 |
|
|
R-103 |
|
|
V-100 |
|
|
V-101 |
|
|
V-102 |
|
|
V-103 |
|
|
V-104 |
|
|
AC-100 |
|
|
SC-100 |
|
|
K-100 |
|
|
E-100 |
|
|
E-101 |
|
|
E-102 |
|
|
E-103 |
|
|
E-104 |
|
|
E-105 |
|
|
E-106 |
|
|
E-107 |
|
|
X-101 |
|
|
X-102 |
|
|
X-103 |
|
|
X-104 |
|
|
X-105 |
|
|
FC-100 |
|
|
References
1. OPEC. World oil outlook 2016 organization of the petroleum exporting countries. Vienna: Austria; 2016:2016 pp.Suche in Google Scholar
2. Alotaibi, FM, González-Cortés, S, Alotibi, MF, Xiao, T, Al-Megren, H, Yang, G, et al.. Enhancing the production of light olefins from heavy crude oils: turning challenges into opportunities. Catal Today 2018;317:86–98. https://doi.org/10.1016/j.cattod.2018.02.018.Suche in Google Scholar
3. Speight, JG. Hydrotreating and desulfurization. Heavy Extra-heavy Oil Upgrad Technol 2013;237–73. https://doi.org/10.1016/B978-0-12-404570-5.00004-1.Suche in Google Scholar
4. Kokayeff, P, Zink, S, Roxas, P. Hydrotreating in petroleum processing. In: Jones, DSJ, Pufado, PR, editors. Handbook of petroleum processing. Dordrecht: Springer Netherlands; 2015:361–434 pp. https://doi.org/10.1007/978-3-319-14529-7_8.Suche in Google Scholar
5. Kim, T, Ryu, J, Kim, M-J, Kim, H-J, Shul, Y-G, Jeon, Y, et al.. Characterization and analysis of vanadium and nickel species in atmospheric residues. Fuel 2014;117:783–91. https://doi.org/10.1016/j.fuel.2013.10.001.Suche in Google Scholar
6. Kim, T, Al-Mutairi, A, Marafi, AMJ, Park, JI, Koyama, H, Yoon, SH, et al.. Hydrotreatment of two atmospheric residues from Kuwait Export and Lower Fars crude oils. Fuel 2014;117:191–7. https://doi.org/10.1016/j.fuel.2013.09.057.Suche in Google Scholar
7. Ancheyta, J, Rana, MS, Furimsky, E. Hydroprocessing of heavy petroleum feeds: tutorial. Catal Today 2005;109:3–15. https://doi.org/10.1016/j.cattod.2005.08.025.Suche in Google Scholar
8. Pourmoghaddam, P, Davari, S, Moghaddam, Z. A technical and economic assessment of fuel oil hydrotreating technology for steam power plant SO 2 and NOx emissions control. Adv Environ Technol 2016;1:45–54.Suche in Google Scholar
9. Marafi, A, Hauser, A, Stanislaus, A. Atmospheric residue desulfurization process for residual oil upgrading: an investigation of the effect of catalyst type and operating severity on product oil quality. Energy Fuels 2006;20:1145–9. https://doi.org/10.1021/ef050395d.Suche in Google Scholar
10. Lababidi, HMS, Shaban, HI, Al-Radwan, S, Alper, E. Simulation of an atmospheric residue desulfurization unit by quasi-steady state modeling. Chem Eng Technol 1998;21:193–200. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-T.10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-TSuche in Google Scholar
11. Al-Nasser, A, Chaudhuri, SR, Bhattacharya, S. Mina Abdulla refinery experience with atmospheric residuedesulfurization (ARDS). Stud Surf Sci Catal 1996;100:171–80. https://doi.org/10.1016/S0167-2991(96)80017-6.Suche in Google Scholar
12. Gruia, A. Hydrotreating. In: Handbook of petroleum processing. New York, USA: Springer; 2006.Suche in Google Scholar
13. Dincer, I, Rosen, MA. Exergy and energy analyses. In: Exergy, 2nd ed. Ontario, Canada: Elsevier; 2013:21–30 pp. https://doi.org/10.1016/B978-0-08-097089-9.00002-4.Suche in Google Scholar
14. Peters, JF, Petrakopoulou, F, Dufour, J. Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Process Technol 2014;119:245–55. https://doi.org/10.1016/j.fuproc.2013.11.007.Suche in Google Scholar
15. Amelio, A, Van De Voorde, T, Creemers, C, Degrève, J, Darvishmanesh, S, Luis, P, et al.. Comparison between exergy and energy analysis for biodiesel production. Energy 2016;98:135–45. https://doi.org/10.1016/j.energy.2016.01.018.Suche in Google Scholar
16. DOE, US. Chemical bandwidth study. Washington, DC: Office of energy efficiency and renewable energy; 2006.Suche in Google Scholar
17. Parkash, S. Distillate hydrotreating. In: Refining processes handbook. Burlington, USA: Gulf Publishing, Elsevier; 2003:29–61 pp. https://doi.org/10.1016/B978-075067721-9/50002-5.Suche in Google Scholar
18. Fahim, MA, Alsahhaf, TA, Elkilani, A. Hydroconversion. In: Fundamentals of petroleum refining. Oxford: Elsevier; 2010:153–98 pp. https://doi.org/10.1016/B978-0-444-52785-1.00007-3.Suche in Google Scholar
19. Meyers, RA, editor. Handbook of petroleum refining processes, 3rd ed. New York, USA: McGraw-Hill; 2004. https://doi.org/10.1017/CBO9781107415324.004.Suche in Google Scholar
20. Speight, JG, Ancheyta Juárez, J. Hydroprocessing of heavy oils and residua. Abidgon, UK: CRC Press; 2007.10.1201/9781420007435Suche in Google Scholar
21. Kotas, TJ. Basic exergy concepts. In: The exergy method of thermal plant analysis. London: Krieger Publishing Company; 1995:29–51 pp.10.1016/B978-0-408-01350-5.50009-XSuche in Google Scholar
22. Rivero, R. Application of the exergy concept in the petrochemical industry. Effic Costs Optim Simul Environ Asp energy Syst 2002;43:76–83.10.1016/S0196-8904(02)00008-0Suche in Google Scholar
23. Bernardo, P, Barbieri, G, Drioli, E. An exergetic analysis of membrane unit operations integrated in the ethylene production cycle. Chem Eng Res Des 2006;84:405–11. https://doi.org/10.1205/cherd05014.Suche in Google Scholar
24. Bandyopadhyay, S. Thermal integration of a distillation column through side-exchangers. Chem Eng Res Des 2007;85:155–66. https://doi.org/10.1205/CHERD06108R1.Suche in Google Scholar
25. Benali, T, Tondeur, D, Jaubert, JN. An improved crude oil atmospheric distillation process for energy integration: part I: energy and exergy analyses of the process when a flash is installed in the preheating train. Appl Therm Eng 2012;32:125–31. https://doi.org/10.1016/j.applthermaleng.2011.08.038.Suche in Google Scholar
26. Vilarinho, AN, Campos, JBLM, Pinho, C. Energy and exergy analysis of an aromatics plant. Case Stud Therm Eng Times 2016;8:115–27. https://doi.org/10.1016/j.csite.2016.06.003.Suche in Google Scholar
27. Mehdizadeh-Fard, M, Pourfayaz, F, Mehrpooya, M, Kasaeian, A. Improving energy efficiency in a complex natural gas refinery using combined pinch and advanced exergy analyses. Appl Therm Eng 2018;137:341–55. https://doi.org/10.1016/j.applthermaleng.2018.03.054.Suche in Google Scholar
28. Nejat, T, Movasati, A, Wood, DA, Ghanbarabadi, H. Simulated exergy and energy performance comparison of physical–chemical and chemical solvents in a sour gas treatment plant. Chem Eng Res Des 2018;133:40–54. https://doi.org/10.1016/j.cherd.2018.02.040.Suche in Google Scholar
29. Bilal, S, Mohammed Dabo, IA, Mujahid, AU, Kasim, SA, Nuhu, M, Mohammed, A, et al.. Simulation of hydrodesulphurization (HDS) unit of kaduna refining and petrochemical company limited. Chem Process Eng Res 2014;7:3–9.Suche in Google Scholar
30. Du, Z, Li, C, Sun, W, Wang, J. A simulation of diesel hydrotreating process with real component method. Chin J Chem Eng 2015;23:780–8. https://doi.org/10.1016/j.cjche.2014.05.021.Suche in Google Scholar
31. Bandyopadhyay, R, Upadhyayula, S. Thermodynamic analysis of diesel hydrotreating reactions. Fuel 2018;214:314–21. https://doi.org/10.1016/j.fuel.2017.10.015.Suche in Google Scholar
32. Wall, G. Exergy tools. Proc Inst Mech Eng Part A J Power Energy 2003;217:125–36. https://doi.org/10.1243/09576500360611399.Suche in Google Scholar
33. Rivero, R, Rendon, C, Monroy, L, Group, E, Mexicano, I. The exergy of crude oil mixtures and petroleum fractions : calculation and application. Int J Appl Thermodyn 1999;2:115–23.Suche in Google Scholar
34. Silva, JAM, De Oliveira, S, Pulgarín, J, Arredondo, HI, V, Molina, A. On the exergy determination for petroleum fractions and separation processes efficiency. Heat Transf Eng Times 2015;36:974–83. https://doi.org/10.1080/01457632.2015.972752.Suche in Google Scholar
35. Szargut, J. Appendix 1. standard chemical exergy. Thermodyn Destr Resour 2011;11:1–8.Suche in Google Scholar
36. Ayres, RU, Ayres, LW, Martinas, K. Exergy and life cycle analysis. INSEAD’s Cent Manag Environ Resour 1996;1–48.10.3406/ecoap.1995.1558Suche in Google Scholar
37. Khosravi, S, Panjeshahi, MH, Ataei, A. Application of exergy analysis for quantification and optimisation of the environmental performance in wastewater treatment plants. Int J Exergy 2013;12:119. https://doi.org/10.1504/IJEX.2013.052552.Suche in Google Scholar
38. Altayeb, RK. Liquid fuel production from pyrolysis of waste tires: process simulation, exergetic analysis, and life cycle assessment. 2015.Suche in Google Scholar
39. CRC. Standard thermodynamic properties of chemical substances, CRC Handb Chem Phys 2012. 65–77. https://doi.org/10.2514/6.2006-4504.Suche in Google Scholar
40. Bejan, A, Tsatsaronis, G, Moran, MJ. Thermal design and optimization. New Jersey, USA: John Wiley & Sons, Inc.; 1996.Suche in Google Scholar
41. Dincer, I, Rosen, MA. Exergy: energy, environment and sustainable development. In: Exergy, 2nd ed. Ontario, Canada: Elsevier; 2013. https://doi.org/10.1016/B978-0-08-097089-9.05001-4.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Influence of lime (CaO) on low temperature leaching of some types of bauxite from Guinea
- Ethnobotanical survey, phytoconstituents and antibacterial investigation of Rapanea melanophloeos (L.) Mez. bark, fruit and leaf extracts
- Catalytic properties of supramolecular polymetallated porphyrins
- Lignin-based polymers
- Bio-based polyhydroxyalkanoates blends and composites
- Biodegradable poly(butylene adipate-co-terephthalate) (PBAT)
- Repurposing tires – alternate energy source?
- Theoretical investigation of the stability, reactivity, and the interaction of methyl-substituted peridinium-based ionic liquids
- Polymeric membranes for biomedical applications
- Design of locally sourced activated charcoal filter from maize cob for wastewater decontamination: an approach to fight waste with waste
- Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds
- Magnetic measurement methods to probe nanoparticle–matrix interactions
- Health and exposure risk assessment of heavy metals in rainwater samples from selected locations in Rivers State, Nigeria
- Evaluation of raw, treated and effluent water quality from selected water treatment plants: a case study of Lagos Water Corporation
- A chemoinformatic analysis of atoms, scaffolds and functional groups in natural products
- Hemicyanine dyes
- Thermodynamics of the micellization of quaternary based cationic surfactants in triethanolamine-water media: a conductometry study
- Compounds isolated from hexane fraction of Alternanthera brasiliensis show synergistic activity against methicillin resistant Staphylococcus aureus
- Internal structures and mechanical properties of magnetic gels and suspensions
- SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications
- Magnetic field controlled behavior of magnetic gels studied using particle-based simulations
- The microstructure of magnetorheological materials characterized by means of computed X-ray microtomography
- Core-modified porphyrins: novel building blocks in chemistry
- Anticancer potential of indole derivatives: an update
- Novel drug design and bioinformatics: an introduction
- Multi-objective optimization of CCUS supply chains for European countries with higher carbon dioxide emissions
- Exergy analysis of an atmospheric residue desulphurization hydrotreating process for a crude oil refinery
- Development in nanomembrane-based filtration of emerging contaminants
- Supply chain optimization framework for CO2 capture, utilization, and storage in Germany
- Naturally occurring heterocyclic anticancer compounds
- Part-II- in silico drug design: application and success
- Advances in biopolymer composites and biomaterials for the removal of emerging contaminants
- Nanobiocatalysts and photocatalyst in dye degradation
- 3D tumor model – a platform for anticancer drug development
- Hydrogen production via water splitting over graphitic carbon nitride (g-C3N4 )-based photocatalysis
Artikel in diesem Heft
- Frontmatter
- Reviews
- Influence of lime (CaO) on low temperature leaching of some types of bauxite from Guinea
- Ethnobotanical survey, phytoconstituents and antibacterial investigation of Rapanea melanophloeos (L.) Mez. bark, fruit and leaf extracts
- Catalytic properties of supramolecular polymetallated porphyrins
- Lignin-based polymers
- Bio-based polyhydroxyalkanoates blends and composites
- Biodegradable poly(butylene adipate-co-terephthalate) (PBAT)
- Repurposing tires – alternate energy source?
- Theoretical investigation of the stability, reactivity, and the interaction of methyl-substituted peridinium-based ionic liquids
- Polymeric membranes for biomedical applications
- Design of locally sourced activated charcoal filter from maize cob for wastewater decontamination: an approach to fight waste with waste
- Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds
- Magnetic measurement methods to probe nanoparticle–matrix interactions
- Health and exposure risk assessment of heavy metals in rainwater samples from selected locations in Rivers State, Nigeria
- Evaluation of raw, treated and effluent water quality from selected water treatment plants: a case study of Lagos Water Corporation
- A chemoinformatic analysis of atoms, scaffolds and functional groups in natural products
- Hemicyanine dyes
- Thermodynamics of the micellization of quaternary based cationic surfactants in triethanolamine-water media: a conductometry study
- Compounds isolated from hexane fraction of Alternanthera brasiliensis show synergistic activity against methicillin resistant Staphylococcus aureus
- Internal structures and mechanical properties of magnetic gels and suspensions
- SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications
- Magnetic field controlled behavior of magnetic gels studied using particle-based simulations
- The microstructure of magnetorheological materials characterized by means of computed X-ray microtomography
- Core-modified porphyrins: novel building blocks in chemistry
- Anticancer potential of indole derivatives: an update
- Novel drug design and bioinformatics: an introduction
- Multi-objective optimization of CCUS supply chains for European countries with higher carbon dioxide emissions
- Exergy analysis of an atmospheric residue desulphurization hydrotreating process for a crude oil refinery
- Development in nanomembrane-based filtration of emerging contaminants
- Supply chain optimization framework for CO2 capture, utilization, and storage in Germany
- Naturally occurring heterocyclic anticancer compounds
- Part-II- in silico drug design: application and success
- Advances in biopolymer composites and biomaterials for the removal of emerging contaminants
- Nanobiocatalysts and photocatalyst in dye degradation
- 3D tumor model – a platform for anticancer drug development
- Hydrogen production via water splitting over graphitic carbon nitride (g-C3N4 )-based photocatalysis