Startseite Exergy analysis of an atmospheric residue desulphurization hydrotreating process for a crude oil refinery
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exergy analysis of an atmospheric residue desulphurization hydrotreating process for a crude oil refinery

  • Poland Jelihi ORCID logo EMAIL logo und Edwin Zondervan
Veröffentlicht/Copyright: 6. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The exhaustion of petroleum reserves and the declining supply of conventional feedstock have forced refineries to use heavier crude oil in their production. Removing the undesirable components containing sulphur and metals in the atmospheric residue (AR) fraction requires extensive catalytic hydrotreating (HT) atmospheric residue desulphurization (ARDS) process. In this work, we endeavour to collect and present a comprehensive dataset to develop and simulate the ARDS HT model. This model is then used for an exergetic analysis to evaluate the performance of the ARDS HT model regarding the exergy destruction, the location of losses and exergetic efficiency. The massive exergy destruction is caused by significant differences in chemical exergy of source and product streams during separations, fractionation and reactions. The exergy destruction in the equipment independent of chemical exergies such as heat exchangers, pumps and compressors is relatively low. This exergetic analysis revealed that the majority of the processing equipment in the ARDS HT process performed satisfactorily. However, the remaining equipment requires improvement for its performance in regards to exergetic efficiency or/and avoidable exergetic losses. To enhance the efficiency of the equipment that is intensive in terms of exergy and energy use, the use of clean and high purity renewable hydrogen and several process rectification is proposed.


Corresponding author: Poland Jelihi, Laboratory of Process Systems Engineering, Sustainable Process Technology, Faculty of Science and Technology (TNW), Twente University, 7500AE, Enschede, the Netherlands; and Petrochemical Engineering Department, Politeknik Kuching Sarawak, 93050, Kuching, Malaysia, E-mail: ,

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendices

Table A1:

Fractionator feeds and products.

Properties Unit Stream
60 62 Top prod Mid dist. Bottom prod
Temperature C 184.6200786 370 175.1618744 235.9451164 647.5861009
Pressure bar 22 24.6 2.5 5.2 25
Mass flow kg/h 193057.9089 5164664.55 222237.7165 30718.11072 5106266.631
Std ideal liq vol flow m3/h 264.4914741 6398.927018 325.9291177 41.76464253 6297.227759
Component Mass flow kg/h
H2O H20 0 0 1489.062687 9.866227521 1.071085034
Thiophene C4H2S 0 0 0 0 0
H2S H2S 0 0 0 0 0
Hydrogen H2 39.96724231 1427.842291 1467.370637 0.436047985 0.002848485
n-C30 N-C30 23126.95859 4705781.144 1.15E-24 9.20E-26 4728908.103
n-C20 N-C20 11890.80709 339237.7811 7.77E-25 8.46E-19 351128.5882
Naphthalene C10H8 0 0 0 0 0
n-Decane C10H22 92377.48488 84428.4765 141716.1728 29581.23635 5508.55222
n-Butane C4H10 11887.04167 579.0547542 12443.46077 22.63555972 8.74E-05
Methane CH4 2.133430453 19.93951713 22.05970288 0.013233925 1.08E-05
Propane C3H8 0 0 0 0 0
Pyridine C5H5N 0 0 0 0 0
n-Pentane C5H12 6617.253503 558.9065829 7151.0574 25.10159121 0.001095069
Pyrrole C4H5N 0 0 0 0 0
i-Pentane C5H12 1177.282051 86.08222778 1259.530996 3.833193486 8.99E-05
ThioNaphtene C8H6S 44.32752833 119.6284159 2.49E-05 0.000546656 163.9553726
m-Xylene C8H10 16601.65201 9133.844534 24820.50838 869.569174 45.41899516
DiBZThiphene C12H8S 1.984350242 48.04112397 5.07E-25 7.50E-19 50.02547421
Biphenyl C12H10 1772.659116 6558.860146 5.68E-07 0.000174893 8331.519086
Ammonia NH3 0 0 0 0 0
Cyclopentane C5H10 0 0 0 0 0
n-Hexane C6H14 17918.63026 2604.07957 20401.41462 121.2538602 0.041343406
Cyclohexane C6H12 0 0 0 0 0
1Mcycpentene C6H10 0 0 0 0 0
Benzene C6H6 2010.372908 767.3966834 2751.546801 26.20943951 0.013350285
Toluene C7H8 23.8579955 25.79589011 48.80766961 0.825606232 0.02060977
233M1-butene C7H14 4510.26164 685.0955867 5156.130035 39.21410506 0.013086518
Phenol C6H6O 358.8567375 407.5365065 752.0356937 9.616532248 4.74101812
3-M-1-C4ol C5H12O 412.1054853 64.29900458 469.0558441 7.348565689 8.02E-05
i-Butane C4H10 2283.366196 7.086775295 2289.502467 0.950504627 2.49E-11
DEAmine C4H11NO2 0.108369663 0.642409711 1.40E-17 1.72E-12 0.750779374
Carbon dioxide CO2 0 0 0 0 0
Vanadim V 0 105.0458635 6.76E-27 5.41E-28 105.0458635
Vanadium sulphide V2S3 0 0 0 0 0
Nickel N 0 41.8145376 2.69E-27 2.15E-28 41.8145376
Nickel sulphide NIS 0 0 0 0 0
Asphaltenes 0.797840165 11976.15551 1.89E-24 1.51E-25 11976.95335
Nitrogen N2 0 0 0 0 0
Oxygen O2 0 0 0 0 0
Carbon Monoxide CO   0 0 0 0 0
Table A2:

Mole fraction of component streams for reactors, separator, scrubber and fractionator (continued).

Properties Stream
6 10 13 16 19 20 21 22 23_2 27 28 32 31 33 57 58 59 60
Mole fraction
1Mcycpentene 0.00036 0.00036 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
233M1-butene 0 0 0.00067 0.00064 0.00061 0.00058 0.00053 0.00067 0.00053 0.00051 9.3E-06 0 0 0 0.00104 0.00681 0.02918 0.02918
3-M-1-C4ol 0.00071 0.00071 0.00069 0.00066 6.2E-05 6E-05 5.4E-05 6.7E-05 5.4E-05 5.2E-05 4.2E-07 0 0 0 1E-04 0.00069 0.00297 0.00297
Ammonia 0 0 0 0.00016 0.00038 0.00047 0.00042 0.00018 0.00042 0.00043 0.00018 0 0 0 0.00033 0.00237 0 0
Asphalt* 0.00023 0.00023 0.00022 0.00021 0.0002 2.1E-08 1.9E-08 0.00065 1.9E-08 1E-14 1.1E-28 0 0 0 9.3E-08 1.7E-07 7.4E-07 7.4E-07
Benzene 0.00214 0.00214 0 0 0.00084 0.0008 0.00072 0.00093 0.00072 0.00072 0.00073 0 0 0 0.00124 0.00382 0.01635 0.01635
BiPhenyl 0 0 0 0.00065 0.00062 0.00014 0.00012 0.00171 0.00012 7.6E-05 8.6E-09 0 0 0 0.00052 0.0017 0.0073 0.0073
CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclohexane 0.00071 0.00071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclopentane 0.00143 0.00143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEAmine 6.7E-08 6.7E-08 7.3E-08 7.8E-08 8.2E-08 1.6E-08 1.5E-08 2.3E-07 1.5E-08 3.9E-09 7.5E-16 1.5E-07 0 1.5E-07 6.2E-08 1.5E-07 6.5E-07 6.5E-07
DiBZThiphene 0.00071 0.00071 0.00069 3.3E-06 3.1E-06 1.9E-07 1.7E-07 9.7E-06 1.7E-07 1.2E-08 3.2E-15 0 0 0 8E-07 1.6E-06 6.8E-06 6.8E-06
H2O 0.26319 0.26321 0.25388 0.24146 0.23028 0.23598 0.31513 0.21735 0.31513 0.30771 0.00061 0 0 0.00601 0.41214 0.75967 0 0
H2S 0.00132 0.00122 0.00479 0.00831 0.00803 0.00872 0.00778 0.00645 0.00778 0.00781 0.0103 0.00291 0.01032 0.00289 0.01232 0.00459 0 0
Hydrogen 0.55609 0.55624 0.5683 0.58545 0.59044 0.73191 0.65612 0.26945 0.65612 0.66698 0.9855 0.99616 0.98718 0.99018 0.52317 0.00294 0.01259 0.01259
i-Butane 1.5E-06 1.5E-06 1.7E-06 1.8E-06 0.00056 0.00077 0.00069 8.6E-05 0.00069 0.0007 3.5E-05 3.8E-06 3.5E-05 3.7E-06 0.00021 0.00582 0.02495 0.02495
i-Pentane 0 0 0 0 0.00023 0.00025 0.00022 0.00017 0.00022 0.00022 2E-05 0 0 0 0.0003 0.00242 0.01036 0.01036
m-Xylene 0 0 0 0.00294 0.00278 0.00177 0.00159 0.00507 0.00159 0.00146 8.2E-06 0 0 0 0.00481 0.02318 0.09933 0.09933
Methane 0.00042 0.00042 0.00046 0.00049 0.00108 0.00132 0.00119 0.00052 0.00119 0.0012 0.00178 0.00093 0.00178 0.00092 0.00103 2E-05 8.4E-05 8.4E-05
n-Butane 7.2E-11 7.2E-11 0.00345 0.00344 0.00326 0.00386 0.00346 0.0019 0.00346 0.00348 0.00069 1.6E-10 0.00069 1.6E-10 0.00351 0.03032 0.1299 0.1299
n-C20 0 0 0 0 0.01422 0.00077 0.00069 0.04474 0.00069 1.7E-05 8.7E-14 0 0 0 0.00328 0.00624 0.02673 0.02673
n-C30 0.16354 0.16355 0.15776 0.15004 0.128 0.00099 0.00088 0.4162 0.00088 6.5E-07 3.9E-18 0 0 0 0.00438 0.00811 0.03474 0.03474
n-Decane 0 0 0 0 0.01422 0.00752 0.00674 0.02944 0.00674 0.00505 1.6E-06 0 0 0 0.02511 0.09624 0.41238 0.41238
n-Hexane 0 0 0.0031 0.00295 0.0028 0.0027 0.00242 0.00302 0.00242 0.00236 5.5E-05 0 0 0 0.00461 0.03082 0.13207 0.13207
n-Pentane 0 0 0.00138 0.00131 0.00124 0.00134 0.0012 0.00103 0.0012 0.00119 8.3E-05 0 0 0 0.00174 0.0136 0.05825 0.05825
Naphthalene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ni* 2.3E-05 9.4E-06 9E-06 8.6E-06 8.2E-06 0 0 2.7E-05 0 0 0 0 0 0 0 0 0 0
NiS* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oxygen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Phenol 0.00107 0.00107 0.00103 0.00098 9.3E-05 4.2E-05 3.8E-05 0.00021 3.8E-05 3.3E-05 1.9E-08 0 0 0 0.00013 0.00057 0.00242 0.00242
Propane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyridine 0.00026 0.00026 0.00025 0.00024 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyrrole 0.00018 0.00018 0.00017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ThioNaphtene 0.00322 0.00322 0.0031 1.5E-05 1.4E-05 4.1E-06 3.7E-06 3.6E-05 3.7E-06 1.9E-06 1.1E-10 0 0 0 1.6E-05 4.9E-05 0.00021 0.00021
Thiophene 0.00357 0.00357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toluene 0.00071 0.00071 1.6E-05 1.5E-05 1.4E-05 1.1E-05 0 2.1E-05 0 0 0 0 0 0 2.2E-05 3.8E-05 0.00016 0.00016
V* 9.1E-05 2.7E-05 2.6E-05 2.5E-05 2.4E-05 0 0 7.7E-05 0 0 0 0 0 0 0 0 0 0
V2S3* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Properties Stream
62 LAm RAm V2S3 NiS Sour gas Steam TopP MidD BotP
Mole fraction
1Mcycpentene 0 0 0 0 0 0 0 0 0
233M1-butene 0.0005 0 0 0 8.1E-05 0 0.0191 0.00182 1.1E-08
3-M-1-C4ol 5.3E-05 0 0 0 1E-06 0 0.00193 0.00038 7.3E-11
Ammonia 0 0 0 0 0.00124 0 0 0 0
Asphalt* 0.00126 0 0 0 5.8E-23 0 1E-30 1E-30 0.00139
Benzene 0.00071 0 0 0 0.00069 0 0.01281 0.00153 1.4E-08
BiPhenyl 0.00307 0 0 0 3.8E-08 0 1.3E-12 5.2E-09 0.00431
CO 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0
Cyclohexane 0 0 0 0 0 0 0 0 0
Cyclopentane 0 0 0 0 0 0 0 0 0
DEAmine 4.4E-07 0.15 0.95 0 1.8E-14 0 4.8E-23 7.4E-17 5.7E-07
DiBZThiphene 1.9E-05 0 0 0 1.8E-13 0 1E-30 1.9E-23 2.2E-05
H2O 0 0 0 0 0.00282 1 0.03006 0.00249 4.7E-06
H2S 0 0 0.03126 0 0.02617 0 0 0 0
Hydrogen 0.05112 0.85 0.01383 0 0.95853 0 0.26467 0.00098 1.1E-07
i-Butane 8.8E-06 0 0.00018 0 0.00118 0 0.01432 7.4E-05 3.4E-17
Properties
Stream
62
LAm
RAm
V2S3 NiS
Sour gas
Steam
TopP
MidD
BotP
i-Pentane 8.6E-05 0 0 0 0.00018 0 0.00635 0.00024 9.9E-11
m-Xylene 0.00621 0 0 0 5.2E-05 0 0.08501 0.03723 3.4E-05
Methane 9E-05 0 0.0004 0 0.00188 0 0.0005 3.7E-06 5.4E-11
n-Butane 0.00072 0 0.00433 0 0.00581 0 0.07785 0.00177 1.2E-10
n-C20 0.08666 0 0 0 8.5E-12 0 2.1E-34 1.4E-23 0.09908
n-C30 0.80333 0 0 0 5.9E-15 0 1E-30 1E-30 0.89175
n-Decane 0.04283 0 0 0 1.7E-05 0 0.36218 0.94501 0.00309
n-Hexane 0.00218 0 0 0 0.00055 0 0.08608 0.0064 3.8E-08
n-Pentane 0.00056 0 0 0 0.00079 0 0.03604 0.00158 1.2E-09
Naphthalene 0 0 0 0 0 0 0 0 0
Ni* 5.1E-05 0 0 0 0 0 1.7E-32 1.7E-32 5.7E-05
NiS* 0 0 0 0.30745 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 0 0 0
Oxygen 0 0 0 0 0 0 0 0 0
Phenol 0.00031 0 0 0 1.3E-07 0 0.00291 0.00046 4E-06
Propane 0 0 0 0 0 0 0 0 0
Pyridine 0 0 0 0 0 0 0 0 0
Pyrrole 0 0 0 0 0 0 0 0 0
ThioNaphtene 6.4E-05 0 0 0 1.5E-09 0 6.8E-11 1.9E-08 9.7E-05
Thiophene 0 0 0 0 0 0 0 0 0
Toluene 2E-05 0 0 0 2.9E-06 0 0.00019 4.1E-05 1.8E-08
V* 0.00015 0 0 0 0 0 4.8E-32 4.8E-32 0.00016
V2S3* 0 0 0 0.69255 0 0 0 0 0
Table A3:

Mole fraction of component streams for splitters.

Properties Stream
29 30 31 33 55 58 59 61 63 SW-101 SW-102 SW-103 SW-104 SW-105
Mole fraction
1Mcycpentene 0 0 0 0 0 0 0 0 0 0 0 0 0 0
233M1-butene 0.00156 9.2E-06 0 0 0.00044 0.00681 0.02918 0.0005 0.02994 0.00072 0 0 0 0
3-M-1-C4ol 0.00016 4.2E-07 0 0 4.6E-05 0.00069 0.00297 5.3E-05 0.00307 3.3E-05 0 0 0 0
Ammonia 0.00094 0.00018 0 0 4.7E-05 0.00237 0 0 0.01815 0.01388 0 0 0.00309 0.00035
Asphalt* 3.2E-14 1.1E-28 0 0 0.00109 1.7E-07 7.4E-07 0.00126 6.1E-13 8.9E-27 0 0 0 0
Benzene 0.00069 0.00073 0 0 0.00061 0.00382 0.01635 0.00071 0.01336 0.05726 0 0 0 0
BiPhenyl 0.00023 8.5E-09 0 0 0.00266 0.0017 0.0073 0.00307 0.0045 6.7E-07 0 0 0 0
CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclohexane 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclopentane 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEAmine 1.2E-08 7.4E-16 0 1.5E-07 3.8E-07 1.5E-07 6.5E-07 4.4E-07 2.3E-07 5.8E-14 0 0 0 0
DiBZThiphene 3.6E-08 3.1E-15 0 0 1.6E-05 1.6E-06 6.8E-06 1.9E-05 7E-07 2.5E-13 0 0 0 0
H2O 0.94802 0.01161 0 0.00601 0.13262 0.75967 0 0 0 0.91492 1 1 0.99092 0.98787
H2S 0.00263 0.01019 0.01032 0.00289 0.00158 0.00459 0 0 0.05055 0 0 0 0.00599 0.01178
Hydrogen 0.00285 0.97466 0.98718 0.99018 0.04426 0.00294 0.01259 0.05112 0.05485 0 0 0 0 0
i-Butane 0.00208 3.4E-05 3.5E-05 3.7E-06 7.6E-06 0.00582 0.02495 8.8E-06 0.03998 0 0 0 0 0
i-Pentane 0.00064 2E-05 0 0 7.5E-05 0.00242 0.01036 8.6E-05 0.01237 0.00158 0 0 0 0
m-Xylene 0.00449 8.1E-06 0 0 0.00538 0.02318 0.09933 0.00621 0.08631 0.00064 0 0 0 0
Methane 9.5E-06 0.00176 0.00178 0.00092 7.8E-05 2E-05 8.4E-05 9E-05 0.00018 0 0 0 0 0
n-Butane 0.0093 0.00068 0.00069 1.6E-10 0.00062 0.03032 0.1299 0.00072 0.17895 0 0 0 0 0
n-C20 5.2E-05 8.6E-14 0 0 0.07503 0.00624 0.02673 0.08666 0.00101 6.8E-12 0 0 0 0
n-C30 2E-06 3.9E-18 0 0 0.69548 0.00811 0.03474 0.80333 3.9E-05 3.1E-16 0 0 0 0
n-Decane 0.01559 1.6E-06 0 0 0.03708 0.09624 0.41238 0.04283 0.29982 0.00013 0 0 0 0
n-Hexane 0.00715 5.5E-05 0 0 0.00189 0.03082 0.13207 0.00218 0.13755 0.00432 0 0 0 0
n-Pentane 0.0035 8.3E-05 0 0 0.00048 0.0136 0.05825 0.00056 0.06732 0.00651 0 0 0 0
Naphthalene 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ni* 0 0 0 0 4.5E-05 0 0 5.1E-05 0 0 0 0 0 0
NiS* 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oxygen 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Phenol 0.0001 1.9E-08 0 0 0.00027 0.00057 0.00242 0.00031 0.00195 1.5E-06 0 0 0 0
Propane 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyridine 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyrrole 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ThioNaphtene 5.9E-06 1.1E-10 0 0 5.6E-05 4.9E-05 0.00021 6.4E-05 0.00011 8.3E-09 0 0 0 0
Thiophene 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toluene 0 0 0 0 1.7E-05 3.8E-05 0.00016 2E-05 0 0 0 0 0 0
V* 0 0 0 0 0.00013 0 0 0.00015 0 0 0 0 0 0
V2S3* 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table A4:

Mass flow of component streams for reactors, separator, scrubber and fractionator (continued).

Properties Stream
6 10 13 16 19 20 21 22 23_2 27 28 31 32 33 57 58 59 60
Mass flow
1Mcycpentene 2230.3 2230.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
233M1-butene 0 0 5208.865 5208.865 5208.865 3442.073 3523.747 1766.792 3523.747 3334.233 40.8354 0 0 0 1271.21 4510.262 4510.262 4510.262
3-M-1-C4ol 4786.39 4786.39 4786.39 4786.39 478.639 320.223 320.289 158.416 320.289 304.8922 1.676557 0 0 0 109.5138 412.1055 412.1055 412.1055
Ammonia 0 0 0 231.1747 566.3781 485.4528 485.5667 80.92529 485.5667 482.5634 136.3287 0 0 0 71.10432 272.1139 0 0
Asphalt* 11976.95 11976.95 11976.95 11976.95 11976.95 0.895021 0.895247 11976.06 0.895247 4.70E-07 3.52E-21 0 0 0 0.79784 0.79784 0.79784 0.79784
Benzene 12723.71 12723.71 0 0 5725.668 3790.548 3791.317 1935.119 3791.317 3748.144 2578.548 0 0 0 1210.895 2010.373 2010.373 2010.373
BiPhenyl 0 0 0 8331.465 8331.465 1294.806 1294.96 7036.659 1294.96 777.4837 0.059311 0 0 0 995.2751 1772.659 1772.659 1772.659
CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclohexane 4569.74 4569.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclopentane 7616.414 7616.414 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEAmine 0.535938 0.535938 0.607588 0.679223 0.750814 0.104804 0.10477 0.646009 0.10477 0.027366 3.53E-09 0 1.27934 1.27934 0.081004 0.10837 0.10837 0.10837
DiBZThiphene 10005.05 10005.05 10005.05 50.02524 50.02524 2.131855 2.132093 47.89338 2.132093 0.144266 2.62E-08 0 0 0 1.840084 1.98435 1.98435 1.98435
H2O 360302 360302 360302 360302 362502.9 257841.6 384034.9 104661.4 384034.9 368598.6 495.6526 0 0 9007.55 92671.97 92323.27 0 0
H2S 3431.094 3147.372 12858.48 23444.74 23903.29 18029.97 17931.35 5873.32 17931.35 17702.82 15772.42 15772.42 8202.555 8202.555 5239.224 1055.534 0 0
Hydrogen 85190.29 85207.08 90252.71 97761.6 104012.7 89492.48 89479.15 14520.2 89479.15 89406.92 89283.02 89283.02 166196.9 166196.9 13164.59 39.96724 39.96724 39.96724
i-Butane 6.672441 6.672441 7.684302 8.700023 2850.141 2716.017 2716.699 134.1247 2716.699 2694.272 90.84179 90.84179 18.14303 18.14303 149.4651 2283.366 2283.366 2283.366
i-Pentane 0 0 0 0 1420.156 1088.633 1088.861 331.5227 1088.861 1065.487 65.74802 0 0 0 268.815 1177.282 1177.282 1177.282
m-Xylene 0 0 0 25811.12 25811.12 11415.9 11417.56 14395.22 11417.56 10305.57 39.16116 0 0 0 6373.361 16601.65 16601.65 16601.65
Methane 517.4686 517.4686 586.5612 655.664 1508.732 1286.906 1286.887 221.8259 1286.887 1283.133 1279.845 1279.845 1234.206 1234.206 205.6404 2.13343 2.13343 2.13343
n-Butane 0.000317 0.000317 15780.15 16569.16 16569.16 13615.67 13618.71 2953.492 13618.71 13443.97 1790.22 1790.22 0.000762 0.000762 2549.175 11887.04 11887.04 11887.04
n-C20 0 0 0 0 351126.8 13258.47 13260.22 337868.4 13260.22 319.3841 1.11E-06 0 0 0 11571.42 11890.81 11890.81 11890.81
n-C30 5254338 5254338 5254338 5254338 4728905 25293.7 25297.25 4703611 25297.25 18.36398 7.49E-11 0 0 0 23108.59 23126.96 23126.96 23126.96
n-Decane 0 0 0 0 176824.8 64868.97 64877.32 111955.8 64877.32 47806.92 10.45248 0 0 0 44597.76 92377.48 92377.48 92377.48
n-Hexane 0 0 21057.05 21057.05 21057.05 14091.29 14093.89 6965.76 14093.89 13496.04 214.8135 0 0 0 4959.527 17918.63 17918.63 17918.63
n-Pentane 0 0 7835.344 7835.344 7835.344 5854.021 5855.211 1981.323 5855.211 5712.445 270.7115 0 0 0 1565.182 6617.254 6617.254 6617.254
Naphthalene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ni* 104.7983 41.81454 41.81454 41.81454 41.81454 0 0 41.81454 0 0 0 0 0 0 0 0 0 0
NiS* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oxygen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Phenol 7665.239 7665.239 7665.239 7665.239 766.5239 238.7485 238.7809 527.7753 238.7809 205.7711 0.079698 0 0 0 153.2486 358.8567 358.8567 358.8567
Propane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyridine 1556.966 1556.966 1556.966 1556.966 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyrrole 910.7308 910.7308 910.7308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ThioNaphtene 32790.95 32790.95 32790.95 163.9547 163.9547 33.14154 33.14475 130.8132 33.14475 16.94468 0.000646 0 0 0 27.38485 44.32753 44.32753 44.32753
Thiophene 22842.18 22842.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toluene 5003.083 5003.083 115.0709 115.0709 115.0709 63.55591 0 51.515 0 0 0 0 0 0 25.71911 23.858 23.858 23.858
V* 351.324 105.0459 105.0459 105.0459 105.0459 0 0 105.0459 0 0 0 0 0 0 0 0 0 0
V2S3* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Properties Stream
62 LAm RAm V2S3 NiS Sour gas Steam TopP MidD BotP
Mass flow
1Mcycpentene 0 0 0 0 0 0 0 0 0
233M1-butene 685.0956 0 0 0 54.34655 0 5156.13 39.21411 0.013087
3-M-1-C4ol 64.299 0 0 0 0.623953 0 469.0558 7.348566 8.02E-05
Ammonia 0 0 0 0 145.2252 0 0 0 0
Asphalt* 11976.16 0 0 0 2.73E-16 0 1.89E-24 1.51E-25 11976.95
Benzene 767.3967 0 0 0 370.1183 0 2751.547 26.20944 0.01335
BiPhenyl 6558.86 0 0 0 0.040414 0 5.68E-07 0.000175 8331.519
CO 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0
Cyclohexane 0 0 0 0 0 0 0 0 0
Cyclopentane 0 0 0 0 0 0 0 0 0
DEAmine 0.64241 709681.5 709680.2 0 1.31E-08 0 1.40E-17 1.72E-12 0.750779
DiBZThiphene 48.04112 0 0 0 2.24E-07 0 5.07E-25 7.50E-19 50.02547
H2O 0 0 0 0 348.7037 1500 1489.063 9.866228 1.071085
H2S 0 0 7569.863 0 6114.094 0 0 0 0
Hydrogen 1427.842 77112 198.0896 0 13248.52 0 1467.371 0.436048 0.002848
i-Butane 7.086775 0 72.69876 0 469.5287 0 2289.502 0.950505 2.49E-11
Properties
Stream
62
LAm
RAm
V2S3 NiS
Sour gas
Steam
TopP
MidD
BotP
i-Pentane 86.08223 0 0 0 91.27145 0 1259.531 3.833193 8.99E-05
m-Xylene 9133.845 0 0 0 38.11701 0 24820.51 869.5692 45.419
Methane 19.93952 0 45.63848 0 206.795 0 22.0597 0.013234 1.08E-05
n-Butane 579.0548 0 1790.219 0 2315.886 0 12443.46 22.63556 8.74E-05
n-C20 339237.8 0 0 0 1.64E-05 0 7.55E-25 8.46E-19 351128.6
n-C30 4705781 0 0 0 1.70E-08 0 1.16E-24 9.30E-26 4728908
n-Decane 84428.48 0 0 0 16.74562 0 141716.2 29581.24 5508.552
n-Hexane 2604.08 0 0 0 322.128 0 20401.41 121.2539 0.041343
n-Pentane 558.9066 0 0 0 389.6621 0 7151.057 25.10159 0.001095
Naphthalene 0 0 0 0 0 0 0 0 0
Ni* 41.81454 0 0 0 0 0 2.69E-27 2.15E-28 41.81454
NiS* 0 0 0 97.39337 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 0 0 0
Oxygen 0 0 0 0 0 0 0 0 0
Phenol 407.5365 0 0 0 0.083274 0 752.0357 9.616532 4.741018
Propane 0 0 0 0 0 0 0 0 0
Pyridine 0 0 0 0 0 0 0 0 0
Pyrrole 0 0 0 0 0 0 0 0 0
ThioNaphtene 119.6284 0 0 0 0.001362 0 2.49E-05 0.000547 163.9554
Thiophene 0 0 0 0 0 0 0 0 0
Toluene 25.79589 0 0 0 1.861113 0 48.80767 0.825606 0.02061
V* 105.0459 0 0 0 0 0 6.76E-27 5.41E-28 105.0459
V2S3* 0 0 0 478.8163 0 0 0 0 0
Table A5:

Mass flow of component streams for splitters.

Properties Stream
29 30 31 33 55 58 59 61 63 SW-101 SW-102 SW-103 SW-104 SW-105
Mass flow
1Mcycpentene 0 0 0 0 0 0 0 0 0 0 0 0 0 0
233M1-butene 3293.397928 40.83539581 0 0 685.0955867 4510.26164 4510.26164 685.0955867 3293.397928 40.83539581 0 0 0 0
3-M-1-C4ol 303.2156118 1.676557368 0 0 64.29900458 412.1054853 412.1054853 64.29900458 303.2156118 1.676557368 0 0 0 0
Ammonia 346.2347694 136.3286646 0 0 12.82425802 272.1138557 0 0 346.2347694 136.3286646 0 0 272.1138557 12.82425802
Asphalt* 4.70E-07 3.52E-21 0 0 11976.15551 0.797840165 0.797840165 11976.15551 4.70E-07 3.52E-21 0 0 0 0
Benzene 1169.596364 2578.547973 0 0 767.3966834 2010.372908 2010.372908 767.3966834 1169.596364 2578.547973 0 0 0 0
BiPhenyl 777.424402 0.05931147 0 0 6558.860146 1772.659116 1772.659116 6558.860146 777.424402 0.05931147 0 0 0 0
CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclohexane 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclopentane 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEAmine 0.027365966 3.53E-09 0 1.279340193 0.642409711 0.108369663 0.108369663 0.642409711 0.027365966 3.53E-09 0 0 0 0
DiBZThiphene 0.144266353 2.62E-08 0 0 48.04112397 1.984350242 1.984350242 48.04112397 0.144266353 2.62E-08 0 0 0 0
H2O 368102.9233 9503.202815 0 9007.55024 38234.83818 92323.26806 0 0 0 9503.202815 9007.55024 368102.9233 92323.26806 38234.83818
H2S 1930.404165 15772.41805 15772.41805 8202.555491 862.6263941 1055.534278 0 0 1930.404165 0 0 0 1055.534278 862.6263941
Hydrogen 123.9024259 89283.0174 89283.0174 166196.929 1427.842291 39.96724231 39.96724231 1427.842291 123.9024259 0 0 0 0 0
i-Butane 2603.429835 90.84178962 90.84178962 18.1430332 7.086775295 2283.366196 2283.366196 7.086775295 2603.429835 0 0 0 0 0
i-Pentane 999.7384881 65.74801887 0 0 86.08222778 1177.282051 1177.282051 86.08222778 999.7384881 65.74801887 0 0 0 0
m-Xylene 10266.40785 39.16115698 0 0 9133.844534 16601.65201 16601.65201 9133.844534 10266.40785 39.16115698 0 0 0 0
Methane 3.288095639 1279.844627 1279.844627 1234.206143 19.93951713 2.133430453 2.133430453 19.93951713 3.288095639 0 0 0 0 0
n-Butane 11653.75261 1790.219711 1790.219711 0.000761818 579.0547542 11887.04167 11887.04167 579.0547542 11653.75261 0 0 0 0 0
n-C20 319.3840941 1.11E-06 0 0 339237.7811 11890.80709 11890.80709 339237.7811 319.3840941 1.11E-06 0 0 0 0
n-C30 18.36397528 7.49E-11 0 0 4705781.144 23126.95859 23126.95859 4705781.144 18.36397528 7.49E-11 0 0 0 0
n-Decane 47796.46881 10.45247532 0 0 84428.4765 92377.48488 92377.48488 84428.4765 47796.46881 10.45247532 0 0 0 0
n-Hexane 13281.23103 214.8135076 0 0 2604.07957 17918.63026 17918.63026 2604.07957 13281.23103 214.8135076 0 0 0 0
n-Pentane 5441.733822 270.7114955 0 0 558.9065829 6617.253503 6617.253503 558.9065829 5441.733822 270.7114955 0 0 0 0
Naphthalene 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ni* 0 0 0 0 41.8145376 0 0 41.8145376 0 0 0 0 0 0
NiS* 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oxygen 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Phenol 205.6913972 0.079697786 0 0 407.5365065 358.8567375 358.8567375 407.5365065 205.6913972 0.079697786 0 0 0 0
Propane 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyridine 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pyrrole 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ThioNaphtene 16.94403721 0.000645856 0 0 119.6284159 44.32752833 44.32752833 119.6284159 16.94403721 0.000645856 0 0 0 0
Thiophene 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Toluene 0 0 0 0 25.79589011 23.8579955 23.8579955 25.79589011 0 0 0 0 0 0
V* 0 0 0 0 105.0458635 0 0 105.0458635 0 0 0 0 0 0
V2S3* 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table A6:

Standard chemical exergy of component fraction.

Compound kJ/kg Source
H2O-water 173.19 Kotas
Thiophene 33,877.17 *
H2S 23,826.29 *
Hydrogen 117,111.62 *
n-C30 89,087.96 *
n-C20 47,031.22 *
Naphthalene 40,968.85 *
n-Decane 47,438.24 *
n-Butane 48,245.13 *
Methane 51,811.08 *
Propane 48,819.65 *
Pyridine 35,796.75 Khosravi
n-Pentane 47,973.00 *
Pyrrole 35,329.05 Peters J.F
i-Pentane 47,973.00 *
ThioNaphtene 34,015.39 Bejan
m-Xylene 43,075.00 *
DiBZThiphene 38,241.90 Bejan
Biphenyl 40,855.35 Khosravi
Ammonia 19,841.46 *
Cyclopentane 46,597.70 *
n-Hexane 47,790.67 *
Cyclohexane 46,510.22 *
1Mcycpentene 47,189.29 Kotas
Benzene 42,199.46 *
Toluene 42,896.85 *
233M1-butene 46,573.75 Kotas
Phenol 33,217.59 *
3-M-1-C4ol 37,568.92 *
i-Butane 47,568.97 *
DEAmine 27,055.30 Bejan
CO2 442.63 *
Vanadium 14,141.85 *
Vanadium sulphide 10,810.08 Bejan
Nickel 3,964.70 *
Nickel sulphide 8,404.73 *
Nitrogen 25.70 *
Oxygen 124.06 *
Carbon dioxide 9,807.25 *
  1. * Values either from [35] or [36].

Table A7:

Stream properties, physical exergy and chemical exergy.

Properties
Stream Temp. Pressure Molar flow Mass flow Mass exergy Phy. exergy Che. exergya
C Bar kgmole/h kg/s kJ/kg MW MW
FStock 235.01 8.6 13600.00 1494.30 10.30 15.39
1 242.80 8.5 13600.00 1494.30 17.97 26.85
2 250.91 130.6 13600.00 1494.30 9.18 13.72
3 38.00 130.6 20000.00 100.08 14.26 1.43
4 232.24 130.6 33600.00 1594.38 5.65 9.01
5 370.00 130.6 33600.00 1594.38 205.06 326.94
6 360.58 130 75990.14 1619.14 275.20 445.59 22792.87
7 360.61 130 48396.77 99.71 2118.73 211.25
8 360.61 130 27590.95 1519.44 151.57 230.30
9 356.00 130 27587.46 1519.28 143.49 218.00
10 356.71 130 75984.23 1618.98 267.73 433.45 22795.29
11 362.31 129 51677.70 107.82 2099.68 226.40
12 362.31 129 27098.60 1513.89 154.50 233.89
13 362.31 129 78776.29 1621.72 286.55 464.70 22168.65
14 363.42 128 56223.25 118.05 2084.44 246.08
15 363.42 128 26606.22 1506.39 156.49 235.73
16 363.42 128 82829.47 1624.45 299.41 486.37 21360.2
17 366.89 127 60651.40 146.81 1847.07 271.17
18 366.89 127 26730.05 1480.37 158.94 235.29 2131.214
19 366.89 127 87381.45 1627.18 314.15 511.18 17063.8
20 366.89 127 60651.40 146.81 1847.07 271.17
21 361.50 127 67647.12 181.85 1683.14 306.07
22 366.89 127 26730.05 1480.37 158.94 235.29 48778.73
23 320.00 124 67647.12 181.85 1584.03 288.05
23_1 280.00 124 67647.12 181.85 1492.61 271.43
23_2 260.00 124 67647.12 181.85 1433.80 260.73 1906.627
24 260.00 124 1154.97 20.53 40.46 0.83 62.73197
25 260.00 124 66492.15 161.31 1609.32 259.60 1933.66
26 250.00 120 66492.15 161.31 1576.08 254.24
27 40.50 120 66492.15 161.31 925.36 149.27 1933.66
28 40.50 120 44938.71 31.13 4749.67 147.86 2863.126
29 40.50 120 21553.44 130.18 24.31 3.16 17.64184
30 40.33 120 45438.71 33.63 4458.19 149.94 2831.272
32 55.45 95 82756.89 48.79 5322.68 259.71 2868.038
31 38.00 122 44862.14 30.06 4926.63 148.09 5385.802
33 52.88 95 83256.89 51.29 5101.99 261.70 5353.111
34 50.00 96.5 82756.89 48.79 5334.77 260.30 5385.802
35 50.00 96.5 48619.67 28.67 5334.77 152.92
36 89.06 130 48619.67 28.67 5750.60 164.84
37 89.06 130 29171.80 17.20 5750.60 98.91
38 89.25 130 36871.80 21.51 5811.96 125.02
39 117.57 128 36871.80 21.51 5873.89 126.36
39_1 194.05 126 36871.80 21.51 6172.91 132.79
40 305.62 124 36871.80 21.51 6813.85 146.58
40_1 342.05 120 36871.80 21.51 7029.00 151.20
41 89.06 130 19447.87 11.47 5750.60 65.94
42 360.00 130 19447.87 11.47 7178.81 82.31
43 360.00 130 4634.82 2.73 7178.81 19.62 301.3643
44 360.00 130 14813.05 8.73 7178.81 62.70
45 360.00 130 4634.86 2.73 7178.81 19.62 301.5873
46 360.00 130 10178.20 6.00 7178.81 43.08
47 360.00 130 4634.85 2.73 7178.81 19.62 301.6093
48 360.00 130 5543.35 3.27 7178.81 23.46
49 360.00 130 5542.87 3.27 7178.84 23.46
50 460.00 130 36871.80 21.51 8045.30 173.07
51 365.04 124 27885.02 1500.90 159.81 239.86
51_1 357.11 120 27885.02 1500.90 147.22 220.96
52 355.00 118 27885.02 1500.90 144.51 216.90
53 348.03 24.5 27885.02 1500.90 177.87 266.97 47334.65
54 348.03 24.5 11881.65 55.41 833.06 46.16 253.1855
55 348.03 24.5 16003.37 1445.49 150.23 217.16 81379.62
56 309.72 24.5 12481.65 58.41 766.21 44.76
57 220.00 23.5 12481.65 58.41 612.53 35.78 240.8149
58 40.50 23.5 6746.09 79.64 55.37 4.41 141.6837
59 40.00 24 1574.37 53.63 81.27 4.36 610.2529
60 184.62 22 1574.37 53.63 88.06 4.72 610.2047
61 356.00 24.6 13854.93 1434.63 160.31 229.99 94086.17
62 370.00 24.6 13854.93 1434.63 183.69 263.52 94085.94
63 40.00 120 1120.42 27.93 156.49 4.37 60.86441
64 39.44 23.5 1120.42 27.93 99.05 2.77 261.4168
H2 make-up 90.00 130 7700.00 4.31 6056.74 26.12
LAm 55.00 100 45000.00 218.55 378.01 82.62 2927.318
RAm 41.64 100 7105.26 199.82 163.56 32.68 5068.333
V2S3 NiS 356.00 130 3.49 0.16 453.07 0.07 1.064962
Sour gas 40.50 23.5 6855.98 6.70 2216.73 14.86 414.2157
SW-101 38.00 122 576.56 3.57 40.12 0.14 1.865941
SW-102 50.00 96.5 500.00 2.50 13.88 0.03 0.124998
SW-103 40.00 120 20433.02 102.25 13.58 1.39 5.105746
SW-104 40.00 24 5171.72 26.01 3.70 0.10 1.290925
SW-105 356.00 24.6 2148.44 10.86 1078.64 11.72 0.572351
WW-100 370.00 127 7001.00 35.03 1261.50 44.20
WW-101 30.00 125 500.00 2.50 12.68 0.03
WW-102 32.00 125 500.00 2.50 12.86 0.03
WW-103 80.00 125 600.00 3.00 31.46 0.09
Steam 370.00 30 83.26 0.42 1141.88 0.48 0.020816
Top Prod 175.16 2.5 2750.05 61.73 71.71 4.43 755.7515
Mid. Dist. 235.95 5.2 220.00 8.53 15.49 0.13 368.7781
Bot. Prod. 647.59 25 12542.52 1418.41 841.92 1194.19 104954.8
  1. a Streams with empty chemical exergy values are not included. These values does not affects the exergetic analysis of equipment that not involved in chemical reactions, separations or phase changes.

    The physical exergy is calculated as Mass exergy x Mass flow. These two variables are obtained directly from the simulated model in Aspen HYSYS V10.

    The streams component mole fraction and mass flow used to calculate the chemical exergy for reactors, separators, fractionator, scrubber and splitters are listed in Table A1A6.

Table A8:

Exergy destruction and exergy efficiency.

Equipment Exergy destruction Exergy efficiency
P-101 I P 101 = E x 1 E x 2 W P 100 ϵ P 101 = E x 2 E x 1 W P 100
FH-100 I F H 100 = E x 4 + Q F H 100 ( 1 T o T 5 ) E x 5 ϵ F 100 = E x 4 E x 5 Q F H 100
R-100 I R 100 = E x 10 + E x V , N i E x 5 Q V , N i ϵ R 100 = E x 16 E x 10 E x V , N i Q F H 100
R-101 I R 101 = E x 10 + E x 47 E x 13 ϵ R 101 = I R 101 E x 10 E x 13
R-102 I R 102 = E x 13 + E x 45 E x 16 ϵ R 102 = I R 102 E x 13 E x 16
R-103 I R 103 = E x 19 + E x 43 E x 16 ϵ R 103 = I R 103 E x 16 E x 19
V-100 I V 100 = E x 20 + E x 22 E x 19 ϵ V 103 = I V 100 E x 20 + E x 22
V-101 I V 101 = E x 25 + E x 24 E x 23 2 ϵ V 101 = I V 102 E x 25 + E x 24
V-102 I V 102 = E x 20 + E x 22 E x 19 ϵ V 102 = I V 102 E x 20 + E x 22
V-103 I V 103 = E x 54 + E x 55 E x 53 ϵ V 103 = I V 103 E x 54 + E x 55
V-104 I V 104 = E x 58 + E x S G a s E x 64 E x 57 Q V 104 ϵ V 104 = I V 100 E x 58 + E x S G a s
AC-100 I A C 100 = E x 27 + Q A C 100 E x 26 ϵ A C 100 = E x 26 E x 27 Q A C 100
SC-100 I S C 100 = E x 31 E x 32 + E x L A m E x R A m ϵ S C 100 = E x R A m E x L A m E x 32 E x 31
K-100 I K 100 = E x 35 E x 36 W K 100 ϵ K 100 = E x 36 E x 35 W K 100
E-100 I E 100 = E x F S + E x 23 E x 1 E x 23 1 ϵ E 100 = E x 1 E x F S E x 23 E x 23 1
E-101 I E 101 = E x 39 1 + E x 21 E x 40 E x 23 ϵ E 101 = E x 39 1 E x 40 E x 21 E x 23
E-102 I F 102 = E x 39 + E x 23 1 E x 39 1 E x 23 2 ϵ E 102 = E x 39 1 E x 39 E x 23 1 + E x 23 2
E-103 I E 103 = E x 38 + E x 25 E x 39 E x 26 ϵ E 103 = E x 39 E x 38 E x 25 E x 26
E-104 I E 104 = E x 40 1 E x 50 + Q E 104 ( 1 T o T E 104 ) ϵ E 104 = E x 50 E x 40 1 + Q E 104 ( 1 T o T E 104 )
E-105 I E 105 = E x 51 + E x 41 E x 42 E x 51 1 ϵ E 105 = E x 42 E x 41 E x 51 E x 51 1
E-106 I E 106 = E x 51 1 + E x 40 E x 52 E x 40 1 ϵ E 106 = E x 52 E x 51 1 E x 40 E x 40 1
E-107 I E 107 = E x 60 + E x 57 E x 59 E x 56 ϵ E 107 = E x 60 + E x 57 E x 56 + E x 59
X-101 I X 101 = E x 31 E x S W 101 + Q X 101 ( 1 T o T X 101 ) E x 30 ϵ X 101 = E x 30 E x 31 + E x S W 101 + Q X 101 ( 1 T o T X 101 )
X-102 I X 102 = E x 34 E x S W 102 + Q X 102 ( 1 T o T X 101 ) E x 33 ϵ X 102 = E x 33 E x 34 + E x S W 102 + Q X 102 ( 1 T o T X 102 )
X-103 I X 103 = E x 63 E x S W 103 + Q X 103 ( 1 T o T X 103 ) E x 29 ϵ X 103 = E x 29 E x 63 + E x S W 103 + Q X 103 ( 1 T o T X 103 )
X-104 I X 104 = E x 59 E x S W 104 + Q X 104 ( 1 T o T X 104 ) E x 58 ϵ X 104 = E x 58 E x 59 + E x S W 104 + Q X 104 ( 1 T o T X 104 )
X-105 I X 105 = E x 61 E x S W 105 + Q X 105 ( 1 T o T X 105 ) E x 55 ϵ X 105 = E x 55 E x 61 + E x S W 105 + Q X 105 ( 1 T o T X 105 )
FC-100 I F C 100 = E x T o p P + E x M i d P + E x B o t P + E x Q C o n E x QReb E x 60 E x 62 E x S t e a m ϵ F C 100 = E x QReb + E x 60 + E x 62 + E x S t e a m E x T o p P + E x M i d P + E x B o t P + E x Q C o n

References

1. OPEC. World oil outlook 2016 organization of the petroleum exporting countries. Vienna: Austria; 2016:2016 pp.Suche in Google Scholar

2. Alotaibi, FM, González-Cortés, S, Alotibi, MF, Xiao, T, Al-Megren, H, Yang, G, et al.. Enhancing the production of light olefins from heavy crude oils: turning challenges into opportunities. Catal Today 2018;317:86–98. https://doi.org/10.1016/j.cattod.2018.02.018.Suche in Google Scholar

3. Speight, JG. Hydrotreating and desulfurization. Heavy Extra-heavy Oil Upgrad Technol 2013;237–73. https://doi.org/10.1016/B978-0-12-404570-5.00004-1.Suche in Google Scholar

4. Kokayeff, P, Zink, S, Roxas, P. Hydrotreating in petroleum processing. In: Jones, DSJ, Pufado, PR, editors. Handbook of petroleum processing. Dordrecht: Springer Netherlands; 2015:361–434 pp. https://doi.org/10.1007/978-3-319-14529-7_8.Suche in Google Scholar

5. Kim, T, Ryu, J, Kim, M-J, Kim, H-J, Shul, Y-G, Jeon, Y, et al.. Characterization and analysis of vanadium and nickel species in atmospheric residues. Fuel 2014;117:783–91. https://doi.org/10.1016/j.fuel.2013.10.001.Suche in Google Scholar

6. Kim, T, Al-Mutairi, A, Marafi, AMJ, Park, JI, Koyama, H, Yoon, SH, et al.. Hydrotreatment of two atmospheric residues from Kuwait Export and Lower Fars crude oils. Fuel 2014;117:191–7. https://doi.org/10.1016/j.fuel.2013.09.057.Suche in Google Scholar

7. Ancheyta, J, Rana, MS, Furimsky, E. Hydroprocessing of heavy petroleum feeds: tutorial. Catal Today 2005;109:3–15. https://doi.org/10.1016/j.cattod.2005.08.025.Suche in Google Scholar

8. Pourmoghaddam, P, Davari, S, Moghaddam, Z. A technical and economic assessment of fuel oil hydrotreating technology for steam power plant SO 2 and NOx emissions control. Adv Environ Technol 2016;1:45–54.Suche in Google Scholar

9. Marafi, A, Hauser, A, Stanislaus, A. Atmospheric residue desulfurization process for residual oil upgrading: an investigation of the effect of catalyst type and operating severity on product oil quality. Energy Fuels 2006;20:1145–9. https://doi.org/10.1021/ef050395d.Suche in Google Scholar

10. Lababidi, HMS, Shaban, HI, Al-Radwan, S, Alper, E. Simulation of an atmospheric residue desulfurization unit by quasi-steady state modeling. Chem Eng Technol 1998;21:193–200. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-T.10.1002/(SICI)1521-4125(199802)21:2<193::AID-CEAT193>3.0.CO;2-TSuche in Google Scholar

11. Al-Nasser, A, Chaudhuri, SR, Bhattacharya, S. Mina Abdulla refinery experience with atmospheric residuedesulfurization (ARDS). Stud Surf Sci Catal 1996;100:171–80. https://doi.org/10.1016/S0167-2991(96)80017-6.Suche in Google Scholar

12. Gruia, A. Hydrotreating. In: Handbook of petroleum processing. New York, USA: Springer; 2006.Suche in Google Scholar

13. Dincer, I, Rosen, MA. Exergy and energy analyses. In: Exergy, 2nd ed. Ontario, Canada: Elsevier; 2013:21–30 pp. https://doi.org/10.1016/B978-0-08-097089-9.00002-4.Suche in Google Scholar

14. Peters, JF, Petrakopoulou, F, Dufour, J. Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Process Technol 2014;119:245–55. https://doi.org/10.1016/j.fuproc.2013.11.007.Suche in Google Scholar

15. Amelio, A, Van De Voorde, T, Creemers, C, Degrève, J, Darvishmanesh, S, Luis, P, et al.. Comparison between exergy and energy analysis for biodiesel production. Energy 2016;98:135–45. https://doi.org/10.1016/j.energy.2016.01.018.Suche in Google Scholar

16. DOE, US. Chemical bandwidth study. Washington, DC: Office of energy efficiency and renewable energy; 2006.Suche in Google Scholar

17. Parkash, S. Distillate hydrotreating. In: Refining processes handbook. Burlington, USA: Gulf Publishing, Elsevier; 2003:29–61 pp. https://doi.org/10.1016/B978-075067721-9/50002-5.Suche in Google Scholar

18. Fahim, MA, Alsahhaf, TA, Elkilani, A. Hydroconversion. In: Fundamentals of petroleum refining. Oxford: Elsevier; 2010:153–98 pp. https://doi.org/10.1016/B978-0-444-52785-1.00007-3.Suche in Google Scholar

19. Meyers, RA, editor. Handbook of petroleum refining processes, 3rd ed. New York, USA: McGraw-Hill; 2004. https://doi.org/10.1017/CBO9781107415324.004.Suche in Google Scholar

20. Speight, JG, Ancheyta Juárez, J. Hydroprocessing of heavy oils and residua. Abidgon, UK: CRC Press; 2007.10.1201/9781420007435Suche in Google Scholar

21. Kotas, TJ. Basic exergy concepts. In: The exergy method of thermal plant analysis. London: Krieger Publishing Company; 1995:29–51 pp.10.1016/B978-0-408-01350-5.50009-XSuche in Google Scholar

22. Rivero, R. Application of the exergy concept in the petrochemical industry. Effic Costs Optim Simul Environ Asp energy Syst 2002;43:76–83.10.1016/S0196-8904(02)00008-0Suche in Google Scholar

23. Bernardo, P, Barbieri, G, Drioli, E. An exergetic analysis of membrane unit operations integrated in the ethylene production cycle. Chem Eng Res Des 2006;84:405–11. https://doi.org/10.1205/cherd05014.Suche in Google Scholar

24. Bandyopadhyay, S. Thermal integration of a distillation column through side-exchangers. Chem Eng Res Des 2007;85:155–66. https://doi.org/10.1205/CHERD06108R1.Suche in Google Scholar

25. Benali, T, Tondeur, D, Jaubert, JN. An improved crude oil atmospheric distillation process for energy integration: part I: energy and exergy analyses of the process when a flash is installed in the preheating train. Appl Therm Eng 2012;32:125–31. https://doi.org/10.1016/j.applthermaleng.2011.08.038.Suche in Google Scholar

26. Vilarinho, AN, Campos, JBLM, Pinho, C. Energy and exergy analysis of an aromatics plant. Case Stud Therm Eng Times 2016;8:115–27. https://doi.org/10.1016/j.csite.2016.06.003.Suche in Google Scholar

27. Mehdizadeh-Fard, M, Pourfayaz, F, Mehrpooya, M, Kasaeian, A. Improving energy efficiency in a complex natural gas refinery using combined pinch and advanced exergy analyses. Appl Therm Eng 2018;137:341–55. https://doi.org/10.1016/j.applthermaleng.2018.03.054.Suche in Google Scholar

28. Nejat, T, Movasati, A, Wood, DA, Ghanbarabadi, H. Simulated exergy and energy performance comparison of physical–chemical and chemical solvents in a sour gas treatment plant. Chem Eng Res Des 2018;133:40–54. https://doi.org/10.1016/j.cherd.2018.02.040.Suche in Google Scholar

29. Bilal, S, Mohammed Dabo, IA, Mujahid, AU, Kasim, SA, Nuhu, M, Mohammed, A, et al.. Simulation of hydrodesulphurization (HDS) unit of kaduna refining and petrochemical company limited. Chem Process Eng Res 2014;7:3–9.Suche in Google Scholar

30. Du, Z, Li, C, Sun, W, Wang, J. A simulation of diesel hydrotreating process with real component method. Chin J Chem Eng 2015;23:780–8. https://doi.org/10.1016/j.cjche.2014.05.021.Suche in Google Scholar

31. Bandyopadhyay, R, Upadhyayula, S. Thermodynamic analysis of diesel hydrotreating reactions. Fuel 2018;214:314–21. https://doi.org/10.1016/j.fuel.2017.10.015.Suche in Google Scholar

32. Wall, G. Exergy tools. Proc Inst Mech Eng Part A J Power Energy 2003;217:125–36. https://doi.org/10.1243/09576500360611399.Suche in Google Scholar

33. Rivero, R, Rendon, C, Monroy, L, Group, E, Mexicano, I. The exergy of crude oil mixtures and petroleum fractions : calculation and application. Int J Appl Thermodyn 1999;2:115–23.Suche in Google Scholar

34. Silva, JAM, De Oliveira, S, Pulgarín, J, Arredondo, HI, V, Molina, A. On the exergy determination for petroleum fractions and separation processes efficiency. Heat Transf Eng Times 2015;36:974–83. https://doi.org/10.1080/01457632.2015.972752.Suche in Google Scholar

35. Szargut, J. Appendix 1. standard chemical exergy. Thermodyn Destr Resour 2011;11:1–8.Suche in Google Scholar

36. Ayres, RU, Ayres, LW, Martinas, K. Exergy and life cycle analysis. INSEAD’s Cent Manag Environ Resour 1996;1–48.10.3406/ecoap.1995.1558Suche in Google Scholar

37. Khosravi, S, Panjeshahi, MH, Ataei, A. Application of exergy analysis for quantification and optimisation of the environmental performance in wastewater treatment plants. Int J Exergy 2013;12:119. https://doi.org/10.1504/IJEX.2013.052552.Suche in Google Scholar

38. Altayeb, RK. Liquid fuel production from pyrolysis of waste tires: process simulation, exergetic analysis, and life cycle assessment. 2015.Suche in Google Scholar

39. CRC. Standard thermodynamic properties of chemical substances, CRC Handb Chem Phys 2012. 65–77. https://doi.org/10.2514/6.2006-4504.Suche in Google Scholar

40. Bejan, A, Tsatsaronis, G, Moran, MJ. Thermal design and optimization. New Jersey, USA: John Wiley & Sons, Inc.; 1996.Suche in Google Scholar

41. Dincer, I, Rosen, MA. Exergy: energy, environment and sustainable development. In: Exergy, 2nd ed. Ontario, Canada: Elsevier; 2013. https://doi.org/10.1016/B978-0-08-097089-9.05001-4.Suche in Google Scholar

Published Online: 2021-10-06

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Reviews
  3. Influence of lime (CaO) on low temperature leaching of some types of bauxite from Guinea
  4. Ethnobotanical survey, phytoconstituents and antibacterial investigation of Rapanea melanophloeos (L.) Mez. bark, fruit and leaf extracts
  5. Catalytic properties of supramolecular polymetallated porphyrins
  6. Lignin-based polymers
  7. Bio-based polyhydroxyalkanoates blends and composites
  8. Biodegradable poly(butylene adipate-co-terephthalate) (PBAT)
  9. Repurposing tires – alternate energy source?
  10. Theoretical investigation of the stability, reactivity, and the interaction of methyl-substituted peridinium-based ionic liquids
  11. Polymeric membranes for biomedical applications
  12. Design of locally sourced activated charcoal filter from maize cob for wastewater decontamination: an approach to fight waste with waste
  13. Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds
  14. Magnetic measurement methods to probe nanoparticle–matrix interactions
  15. Health and exposure risk assessment of heavy metals in rainwater samples from selected locations in Rivers State, Nigeria
  16. Evaluation of raw, treated and effluent water quality from selected water treatment plants: a case study of Lagos Water Corporation
  17. A chemoinformatic analysis of atoms, scaffolds and functional groups in natural products
  18. Hemicyanine dyes
  19. Thermodynamics of the micellization of quaternary based cationic surfactants in triethanolamine-water media: a conductometry study
  20. Compounds isolated from hexane fraction of Alternanthera brasiliensis show synergistic activity against methicillin resistant Staphylococcus aureus
  21. Internal structures and mechanical properties of magnetic gels and suspensions
  22. SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications
  23. Magnetic field controlled behavior of magnetic gels studied using particle-based simulations
  24. The microstructure of magnetorheological materials characterized by means of computed X-ray microtomography
  25. Core-modified porphyrins: novel building blocks in chemistry
  26. Anticancer potential of indole derivatives: an update
  27. Novel drug design and bioinformatics: an introduction
  28. Multi-objective optimization of CCUS supply chains for European countries with higher carbon dioxide emissions
  29. Exergy analysis of an atmospheric residue desulphurization hydrotreating process for a crude oil refinery
  30. Development in nanomembrane-based filtration of emerging contaminants
  31. Supply chain optimization framework for CO2 capture, utilization, and storage in Germany
  32. Naturally occurring heterocyclic anticancer compounds
  33. Part-II- in silico drug design: application and success
  34. Advances in biopolymer composites and biomaterials for the removal of emerging contaminants
  35. Nanobiocatalysts and photocatalyst in dye degradation
  36. 3D tumor model – a platform for anticancer drug development
  37. Hydrogen production via water splitting over graphitic carbon nitride (g-C3N4 )-based photocatalysis
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0064/html
Button zum nach oben scrollen