Startseite Lebenswissenschaften Design of extractive distillation process with mixed entraineri‡
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design of extractive distillation process with mixed entraineri‡

  • Aleksandra Yu Sazonova EMAIL logo , Valentina M Raeva und Alla K Frolkova
Veröffentlicht/Copyright: 11. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The separation of two systems containing minimum boiling azeotropes (acetone-methanol and tetrahydrofuran (THF)-water) was performed using extractive distillation with a heavy boiling mixed entrainer consisting of two compounds. The entrainer constituents did not form new azeotropes with each other and with the components of the original mixture. An analysis of the mixed entrainer influence on the vapor-liquid equilibrium (VLE) and relative volatility provides an understanding of the cases in which the separation by extractive distillation (ED) in the presence of the mixed entrainer revealed energy benefits over their individual constituents. New results for application of the mixed entrainer monoethanolamine (MEA)-ethylene glycol (EG) and dimethyl-sulphoxide (DMSO)-glycerol for the separation of THF-water and acetone-methanol, respectively, are presented for the first time. The individual selective agents were chosen from the efficient entrainers discussed in the literature. The calculations were performed using the platform Aspen Plus 7.3. Different extractive distillation flowsheets are provided for the zeotropic mixed agents, viz. with two or three columns. For the ED of the binary mixtures investigated, the structures of the different separation schemes, the operating parameters of the columns, and the energy consumptions are presented and compared. The application of the mixed entrainer MEA-EG fed into the ED column with pre-mixing can be recommended, providing up to 1.7 % of energy saving for acetone-methanol separation. In the case of THF-water, the mixed entrainer DMSO-glycerol provides 0.8 % of energy saving. The separate inputs of the individual constituents of the mixed entrainer led to a significant increase in the energy consumptions of the flowsheet because of the third regeneration column, hence this flowsheet cannot be recommended for use in the separation of both mixtures.


Presented at the 42nd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 25–29 May 2015.


Acknowledgements.

This work was carried out according to the state task of the Russian Ministry of Education and Science no. 10.99.2014/K.

Symbols

Ftotal flowkmol h−1
Namount of theoretical trays
Npo/Enttray of original mixture/entrainer input Qreb reboiler duty kW
Sselectivity
TtemperatureK
Xcomponent mole fraction
a12relative volatility

Subscripts

DMSOdimethyl sulphoxide
EDextractive distillation
EGethylene glycol
Ententrainer
i, jcomponents of original mixture
EMAmonoethanolamine
THFtetrahydrofuran

Supplementary data

The supplementary data associated with this article can be found in the online version of this paper (DOI: 10.1515/chempap-2015-0247).

References

Berg, L., & Yeh, A. I. (1984). The separation of isopropyl ether from methyl ethyl ketone by extractive distillation. Chemical Engineering Communications, 29, 283-289. DOI: 10.1080/00986448408940163.10.1080/00986448408940163Suche in Google Scholar

Berg, L., Yeh, A. I., & Ratanapupech, P. (1985). The recovery of ethyl acetate by extractive distillation. Chemical Engineering Communications, 39, 193-199. DOI: 10.1080/009864485 08911670.10.1080/009864485 08911670Suche in Google Scholar

Berg, L., Vosburgh, M. G., Christensen, R. W., & Shanahan, M. J. (1988). The separation of lower boiling alcohols by extractive distillation. Chemical Engineering Communications, 66, 1-21. DOI: 10.1080/00986448808940257.10.1080/00986448808940257Suche in Google Scholar

Berg, L., Szabados, R. J., Wendt, K. M., & Yeh, A. I. (1990). The dehydration of the lower fatty acids by extractive distillation. Chemical Engineering Communications, 89, 113-131. DOI: 10.1080/00986449008940563.10.1080/00986449008940563Suche in Google Scholar

Gao, X., Li, X. G., & Li, H. (2010). Hydrolysis of methyl acetate via catalytic distillation: Simulation and design of new technological process. Chemical Engineering and Processing: Process Intensification, 49, 1267-1276. DOI: 10.1016/j.cep.2010.09.015.10.1016/j.cep.2010.09.015Suche in Google Scholar

Gao, X., Wang, F. Z., Li, H., & Li, X. G. (2014). Heat-integrated reactive distillation process for TAME synthesis. Separation and Purification Technology, 132, 468-478. DOI: 10.1016/j.seppur.2014.06.003.10.1016/j.seppur.2014.06.003Suche in Google Scholar

Gil, I. D., Garcia, L. C., & Rodriguez, G. (2014). Simulation of ethanol extractive distillation with mixed glycols as separating agent. Brazilian Journal of Chemical Engineering, 31, 259-270. DOI: 10.1590/s0104-66322014000100024.10.1590/s0104-66322014000100024Suche in Google Scholar

Gmehling, J., & Kleiber, M. (2014). Vapor-liquid equilibrium and physical properties for distillation. In A. Górak, & E. Sorensen (Eds.), Distillation: Fundamentals and principles (pp. 45-95). London, UK: Academic Press. DOI: 10.1016/b978-0-12-386547-2.00002-8.10.1016/b978-0-12-386547-2.00002-8Suche in Google Scholar

Gómez, P. A., & Gil, I. D. (2009). Simulation of the tetrahydrofuran dehydration process by extractive distillation. Latin American Applied Research, 39, 275-284.Suche in Google Scholar

Harris, R. A., Ramjugernath, D., Letcher, T. M., & Raal, J. D. (2002). Monoethanolamine as an extractive solvent for the n-hexane + benzene, cyclohexane + ethanol, and acetone + methanol binary systems. Journal of Chemical & Engineering Data, 4, 781-787. DOI: 10.1021/je010240+.10.1021/je010240+Suche in Google Scholar

Jarvelin, H., & Fair, J. R. (1993). Adsorptive separation of propylene-propane mixtures. Industrial & Engineering Chemistry Research, 32, 2201-2207. DOI: 10.1021/ie00022 a001.10.1021/ie00022 a001Suche in Google Scholar

Kirk, R. E., & Othmer, D. F. (2007). Kirk-Othmer encylopedia of chemical technology (5th ed., Vol. 8). New York, NY, USA: Wiley-Interscience.Suche in Google Scholar

Koczka, K., Maczinger, J., Mizsey, P., & Fonyo, Z. (2007). Novel hybrid separation processes based on pervaporation for THF recovery. Chemical Engineering and Processing Process Intensification, 46, 239-246. DOI: 10.1016/j.cep.2006.05.016.10.1016/j.cep.2006.05.016Suche in Google Scholar

Lei, Z. G., Li, C. Y., & Chen, B. H. (2003). Extractive distillation: A review. Separation & Purification Reviews, 32, 121-213. DOI: 10.1081/spm-120026627.10.1081/spm-120026627Suche in Google Scholar

Liao, B., Lei, Z. G., Xu, Z., Zhou, R. Q., & Duan, Z. T. (2001). New process for separating propylene and propane by extractive distillation with aqueous acetonitrile. Chemical Engineering Journal, 84, 581-586. DOI: 10.1016/s1385-8947(01)00175-9.10.1016/s1385-8947(01)00175-9Suche in Google Scholar

NIST (2001). In P. J. Lindstrom, & W. G. Mallard (Eds.), NIST Chemistry WebBook: NIST standard reference database No. 69. Gaithersburg, MD, USA: National Institute of Standards and Technology.Suche in Google Scholar

Luyben, W. L. (2008). Effect of solvent on controllability in extractive distillation. Industrial & Engineering Chemistry Research, 47, 4425-4439. DOI: 10.1021/ie701757d.10.1021/ie701757dSuche in Google Scholar

Luyben, W., & Chien, I. L. (2010). Design and control of distillation systems for separating azeotropes (pp. 473). Hoboken, NJ, USA: Wiley.10.1002/9780470575802Suche in Google Scholar

Mahdi, T., Ahmad, A., Nasef, M. M., & Ripin, A. (2015). State-of-the-art technologies for separation of azeotropic mixtures. Separation & Purification Reviews, 44, 308-330. DOI: 10.1080/15422119.2014.963607.10.1080/15422119.2014.963607Suche in Google Scholar

Matsuda, H., Liebert, V., Tochigi, K., & Gmehling, J. (2013). Influence of sulfate-based anion ionic liquids on the separation factor of the binary azeotropic system acetone + methanol. Fluid Phase Equilibria, 340, 27-30. DOI: 10.1016/j.fluid.2012.12.006.10.1016/j.fluid.2012.12.006Suche in Google Scholar

Raeva, V. M., Sazonova, A. Yu., & Frolkova, A. K. (2013). Synergetic effect of binary separating agents in extractive rectification of homogeneous mixtures. Theoretical Foundations of Chemical Engineering, 47, 649-659. DOI: 10.1134/s0040579513050096.10.1134/s0040579513050096Suche in Google Scholar

Verma, V. K., & Banerjee, T. (2010). Ionic liquids as entrainers for water + ethanol, water + 2-propanol, and water + THF systems: A quantum chemical approach. The Journal of Chemical Thermodynamics, 42, 909-919. DOI: 10.1016/j.jct.2010.03.001.10.1016/j.jct.2010.03.001Suche in Google Scholar

Yeh, A. I., Berg, L., & Warren, K. J. (1988). The separation of acetone-methanol mixture by extractive distillation. Chemical Engineering Communications, 68, 69-79. DOI: 10.1080/00986448808940398.10.1080/00986448808940398Suche in Google Scholar

Zhang, Z. G., Huang, D. H., Lv, M., Jia, P., Sun, D. Z., & Li, W. X. (2014). Entrainer selection for separating tetrahydrofuran/water azeotropic mixture by extractive distillation. Separation and Purification Technology, 122, 73-77. DOI: 10.1016/j.seppur.2013.10.051.10.1016/j.seppur.2013.10.051Suche in Google Scholar

Received: 2015-6-13
Revised: 2015-10-1
Accepted: 2015-10-22
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst
  3. Original Paper
  4. Photocatalytic reduction of nitro aromatic compounds to amines using a nanosized highly active CdS photocatalyst under sunlight and blue LED irradiation
  5. Original Paper
  6. Synthesis of butyrate using a heterogeneous catalyst based on polyvinylpolypyrrolidone
  7. Original Paper
  8. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry
  9. Original Paper
  10. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
  11. Original Paper
  12. Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
  13. Original Paper
  14. Innovative approach to treating waste waters by a membrane capacitive deionisation system
  15. Original Paper
  16. Liquid—liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents
  17. Original Paper
  18. Design of extractive distillation process with mixed entraineri‡
  19. Original Paper
  20. Kinetic study of non-reactive iron removal from iron-gall inks
  21. Original Paper
  22. Chemoenzymatic polycondensation of para-benzylamino phenol
  23. Original Paper
  24. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-lH-benzotriazole and 5-chloro-lH-benzotriazole
  25. Original Paper
  26. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
  27. Original Paper
  28. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides
  29. Short Communication
  30. Convenient amidation of carboxyl group of carboxyphenylboronic acids
  31. Short Communication
  32. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
  33. Erratum
  34. Erratum to “Adriana Bakalova, Boryana Nikolova-Mladenova, Rossen Buyukliev, Emiliya Cherneva, Georgi Momekov, Darvin Ivanov: Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin”, Chemical Papers 70 (1) 93–100 (2016)*
  35. Erratum
  36. Erratum to “Martyna Rzelewska, Monika Baczyńska, Magdalena Regel-Rosocka, Maciej Wiśniewski: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions”, Chemical Papers 70 (4) 454–460 (2016)*
Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0247/html
Button zum nach oben scrollen