Home Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
Article
Licensed
Unlicensed Requires Authentication

Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins

  • Lucia Očenášová EMAIL logo , Peter Kutschy , Jozef Gonda , Martina Pilátová , Gabriela Gönciová , Ján Mojžiš and Pavel Pazdera
Published/Copyright: February 11, 2016
Become an author with De Gruyter Brill

Electrophilic aromatic substitution is one of the most thoroughly studied reactions in organic chemistry. In the present paper, the 5-brominated spirobrassinol methyl ethers VII, VIII were obtained by electrophilic substitution of the aromatic core of indoline at the C-5 position in the presence of various brominating agents. The same products were also prepared from 5-bromoindole (IX) following the sequence for the synthesis 1-methoxyspirobrassinol methyl ether (V) from indoline. In addition, the new related 5-bromospiroindoline derivatives XX–XXIII were synthesised and their biological activity on human tumour cell lines was examined. The presence of bromine in the indole or indoline skeleton at the C-5 position resulted in the partial increase in anticancer activity on leukaemia cell lines (Jurkat, CEM). The structures of the newly prepared products were determined by 1H and 13C NMR spectroscopy, including HSQC, HMBC, COSY, NOESY and DEPT measurements.


  1. Dr. Peter Kutschy passed away on 11 June 2012.


Acknowledgements.

The authors wish to express their gratitude to the Slovak Scientific Grant Agency (grant nos. 1/0954/12, 1/0322/14 and 1/398/14) and the Slovak Research and Development Agency (contract no. APVV-14-0883) for their financial support of this work. This work was also supported by the State NMR Programme no. 2003SP200280203 and VVGS PF 2012-31.

References

Acheson, R. M., Hunt, P. G., Littelwood, D. M., Murrer, B. A., & Rosenberg, H. E. (1978). The synthesis, reactions, and spectra of 1-acetoxy-, 1-hydroxy- and 1-methoxy-indoles. Journal of the Chemical Society, Perkin Transactions 1, 1978, 1117–1125. DOI: 10.1039/p19780001117.10.1039/p19780001117Search in Google Scholar

Banerjee, T., DuHadaway, J. B., Gaspari, P., Sutanto-Ward, E., Munn, D. H., Mellor, A. L., Malachowski, W. P., Prendergast, G. C., & Muller, A. J. (2008). A key in vivo antitumor mechanism of action of natural product-based brassininsis inhibition of indoleamine 2,3-dioxygenase. Oncogene, 27, 2851–2857. DOI: 10.1038/sj.onc.1210939.10.1038/sj.onc.1210939Search in Google Scholar PubMed

Boyd, E. M., & Sperry, J. (2011). Synthesis of the selective neuronal nitric oxide synthase (nNOS) inhibitor 5,6-dibromo-2’-demethylaplysinopsin. Synlett, 6, 826–830. DOI: 10.1055/s-0030-1259913. 10.1055/s-0030-1259913.Search in Google Scholar

Chandra, T., & Brown, K. L. (2005). Direct glycosylation: Synthesis of α-indoline ribonucleosides. Tetrahedron Letters, 46, 2071–2074. DOI: 10.1016/j.tetlet.2005.01.164.10.1016/j.tetlet.2005.01.164Search in Google Scholar

Hanley, A. B., Parsley, K. R., Lewis, J. A., & Fenwick, G. R. (1990). Chemistry of indole glucosinolates: Intermediacy of indol-3-ylmethyl isothiocyanates in the enzymic hydrolysis of indole glucosinolates. Journal of the Chemical Society, Perkin Transactions 1, 1990, 2273–2276. DOI: 10.1039/p19900002273.10.1039/p19900002273Search in Google Scholar

Ishiyama, H., Yoshizawa, K., & Kobayashi, J. (2012). Enantioselective total synthesis of eudistomidins G, H and I. Tetrahedron, 68, 6186–6192. DOI: 10.1016/j.tet.2012.05.071.10.1016/j.tet.2012.05.071Search in Google Scholar

Kutschy, P., Dzurilla, M., Takasugi, M., Török, M., Achbergerová, I., Homzová, R., & Rácová, M. (1998). New syntheses of indole phytoalexins and related compounds. Tetrahedron, 54, 3549–3566. DOI: 10.1016/s0040-4020(98)00088-x.10.1016/s0040-4020(98)00088-xSearch in Google Scholar

Kutschy, P., Suchý, M., Monde, K., Harada, N., Marušková, R., Čurillová, Z., Dzurilla, M., Miklošová, M., Mezencev, R., & Mojžiš, J. (2002). Spirocyclization strategy toward indole phytoalexins. The first synthesis of (±)-1-methoxyspirobrassinin, (±)-1-methoxyspirobrassinol and (±)-1-methoxyspirobrassinol methyl ether. Tetrahedron Letters, 43, 9489–9492. DOI: 10.1016/s0040-4039(02)02452-8.10.1016/s0040-4039(02)02452-8Search in Google Scholar

Kutschy, P., Salayová, A., Čurillová, Z., Kožár, T., Mezencev, R., Mojžiš, J., Pilátová, M., Balentová, E., Pazdera, P., Sabol, M., & Zburová, M. (2009). 2-(Substituted phenyl)amino analogs of 1-methoxyspirobrassinol methyl ether: Synthesis and anticancer activity. Bioorganic & Medicinal Chemistry, 17, 3698–3712. DOI: 10.1016/j.bmc.2009.03.064.10.1016/j.bmc.2009.03.064Search in Google Scholar PubMed

Monde, K., Taniguchi, T., Miura, N., Kutschy, P., Čurillová, Z., Pilátová, M., & Mojžiš, J. (2005). Chiral cruciferous phytoalexins: Preparation, absolute configuration and biological activity. Bioorganic & Medicinal Chemistry, 13, 5206–5212. DOI: 10.1016/j.bmc.2005.06.001.10.1016/j.bmc.2005.06.001Search in Google Scholar PubMed

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.10.1016/0022-1759(83)90303-4Search in Google Scholar PubMed

Pauletti, P. M., Cintra, L. S., Braguine, C. G., da Silva Filho, A. A., e Silva, M. L. A., Cunha, W. R., & Januário, A. H. (2010). Halogenated indole alkaloids from marine invertebrates. Marine Drugs, 8, 1526–1549. DOI: 10.3390/md8051526.10.3390/md8051526Search in Google Scholar PubMed PubMed Central

Pedras, M. S. C., & Zaharia, I. L. (2000). Sinalbins A and B, phytoalexins from Sinapis alba: Elicitation, isolation and synthesis. Phytochemistry, 55, 213–216. DOI: 10.1016/s0031-9422(00)00277-6.10.1016/s0031-9422(00)00277-6Search in Google Scholar PubMed

Pedras, M. S. C., Suchý, M., & Ahiahonu, P. W. K. (2006). Unprecedented chemical structure and biomimetic synthesis of erucalexin, a phytoalexin from the wild crucifer Erucastrum gallicum. Organic & Biomolecular Chemistry, 4, 691–701. DOI: 10.1039/b515331j.10.1039/b515331jSearch in Google Scholar PubMed

Pedras, M. S. C., Yaya, E. E., & Glawischnig, E. (2011). The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Natural Product Reports, 8, 1381–1405. DOI: 10.1039/c1np00020a.10.1039/c1np00020aSearch in Google Scholar PubMed

Somei, M., & Kawasaki, T. (1989). A new and simple synthesis of 1-hydroxyindole derivatives. Heterocycles, 29, 1251–1254. DOI: 10.3987/com-89-5037.10.3987/com-89-5037Search in Google Scholar

Wang, W., Xiong, C. Y., Yang, J. Q., & Hruby, V. J. (2001). Practical, asymmetric synthesis of aromatic-substituted bulky and hydrophobic tryptophan derivatives. Tetrahedron Letters, 42, 7717–7719. DOI: 10.1016/s0040-4039(01)01626-4.10.1016/s0040-4039(01)01626-4Search in Google Scholar

Received: 2015-8-7
Revised: 2015-9-30
Accepted: 2015-10-7
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst
  3. Original Paper
  4. Photocatalytic reduction of nitro aromatic compounds to amines using a nanosized highly active CdS photocatalyst under sunlight and blue LED irradiation
  5. Original Paper
  6. Synthesis of butyrate using a heterogeneous catalyst based on polyvinylpolypyrrolidone
  7. Original Paper
  8. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry
  9. Original Paper
  10. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
  11. Original Paper
  12. Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
  13. Original Paper
  14. Innovative approach to treating waste waters by a membrane capacitive deionisation system
  15. Original Paper
  16. Liquid—liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents
  17. Original Paper
  18. Design of extractive distillation process with mixed entraineri‡
  19. Original Paper
  20. Kinetic study of non-reactive iron removal from iron-gall inks
  21. Original Paper
  22. Chemoenzymatic polycondensation of para-benzylamino phenol
  23. Original Paper
  24. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-lH-benzotriazole and 5-chloro-lH-benzotriazole
  25. Original Paper
  26. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
  27. Original Paper
  28. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides
  29. Short Communication
  30. Convenient amidation of carboxyl group of carboxyphenylboronic acids
  31. Short Communication
  32. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
  33. Erratum
  34. Erratum to “Adriana Bakalova, Boryana Nikolova-Mladenova, Rossen Buyukliev, Emiliya Cherneva, Georgi Momekov, Darvin Ivanov: Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin”, Chemical Papers 70 (1) 93–100 (2016)*
  35. Erratum
  36. Erratum to “Martyna Rzelewska, Monika Baczyńska, Magdalena Regel-Rosocka, Maciej Wiśniewski: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions”, Chemical Papers 70 (4) 454–460 (2016)*
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0230/html
Scroll to top button