Home A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
Article
Licensed
Unlicensed Requires Authentication

A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle

  • Le Fang , Wei-Tao Gong EMAIL logo , Manivannan Kalavathi Dhinakaran , Li Shang and Gui-Ling Ning
Published/Copyright: February 11, 2016
Become an author with De Gruyter Brill

Anovel Hg2+ ion induced reversible ring contraction was achieved employing the intramolecular reaction of isobutylene with an aromatic hydroxyl group of cyclophane; reversibility of the reaction was facilitated by excess addition of NaBH4 which also resulted in complexation. The ring contraction and expansion was monitored by UV-VIS absorption, and by fluorescence and 1HNMR spectra. Switchable fluorescence behavior (on–off–on) was observed when the ring-size was tuned from a 19-membered ring to an 18-membered and vice versa. This fine tuning has the potential to be applied in the construction of new supramolecular devices.

Acknowledgements.

This research has been supported by the National Natural Science Foundation of China (No. 21206016) and the Fundamental Research Funds for the Central Universities (DUT11LK13).


Supplementary data

Supplementary data associated with this article (A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle) can be found in the online version of this paper (DOI: 10.1515/chempap-2015-0241).


References

Boñaga, L. V. R., Zhang, H. C., Moretto, A. F., Ye, H., Gauthier, D. A., Li, J., Leo, G. C., & Maryanoff, B. E. (2005). Synthesis of macrocycles via cobalt-mediated [2 + 2 + 2] cycloadditions. Journal of the American Chemical Society, 127, 3473–3485. DOI:10.1021/ja045001w.10.1021/ja045001w.Search in Google Scholar

Dhammika Bandara, H. M., & Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 41, 1809–1825. DOI:10.1039/c1cs15179g.10.1039/c1cs15179g.Search in Google Scholar

Gatti, F. G., Leigh, D. A., Nepogodiev, S. A., Slawin, A. M. Z., Teat, S. J., & Wong, J. K. Y. (2001). Stiff and sticky in the right places: The dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. Journal of the American Chemical Society, 123, 5983–5989. DOI:10.1021/ja001697r.10.1021/ja001697r.Search in Google Scholar

Gong, W. T., Hiratani, K., Oba, T., & Ito, S. (2007). A convenient and efficient route for the synthesis of amidecrownophanes via 1 : 1 macrocyclization of di(acid chloride) with diamine derivatives. Tetrahedron Letters, 48, 3073–3076. DOI:10.1016/j.tetlet.2007.02.097.10.1016/j.tetlet.2007.02.097.Search in Google Scholar

Gong, W. T., Harigae, J., Seo, J., Lee, S. S., & Hiratani, K. (2008). Controllable synthesis, structures of amide-crownophane-type macrocycles and their binding ability toward anions. Tetrahedron Letters, 49, 2268–2271. DOI:10.1016/j.tetlet.2008.02.019.10.1016/j.tetlet.2008.02.019.Search in Google Scholar

Gong, W. T., Gao, B., Zhao, J. Z., & Ning, G. L. (2013). Rational design of a reusable chemodosimeter for the selective detection of Hg2+. Journal of Materials Chemistry A, 1, 5501–5504. DOI:10.1039/c3ta10412e.10.1039/c3ta10412e.Search in Google Scholar

Guerriero, P., Tarnburini, S., & Vigato, P. A. (1995). From mononuclear to polynuclear macrocyclic or macroacyclic complexes. Coordination Chemistry Reviews, 139, 17–243. DOI:10.1016/0010-8545(93)01105-7.10.1016/0010-8545(93)01105-7.Search in Google Scholar

Hiratani, K., Suga, J. I., Nagawa, Y., Houjou, H., Tokuhisa, H., Numata, M., & Watanabe, K. (2002). A new synthetic method for rotaxanes via tandem Claisen rearrangement, diesterification and aminolysis. Tetrahedron Letters, 43, 5747–5750. DOI:10.1016/s0040-4039(02)01201-7.10.1016/s0040-4039(02)01201-7.Search in Google Scholar

Hiratani, K., Kaneyama, M., Nagawa, Y., Koyama, E., & Kanesato, M. (2004). Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. Journal of the American Chemical Society, 126, 13568–13569. DOI:10.1021/ja046929r.10.1021/ja046929r.Search in Google Scholar

Izatt, R. M., Bradshaw, J. S., Nielsen, S. A., Lamb, J. D., Christensen, J. J., & Sen, D. (1985). Thermodynamic and kinetic data for cation-macrocycle interaction. Chemical Reviews, 85, 271–339. DOI:10.1021/cr00068a003.10.1021/cr00068a003.Search in Google Scholar

Ji, F. Y., Zhu, L. L., Ma, X., Wang, Q. C., & Tian, H. (2009). A new thermo- and photo-driven [2]rotaxane. Tetrahedron Letters, 50, 597–600. DOI:10.1016/j.tetlet.2008.11.080.10.1016/j.tetlet.2008.11.080.Search in Google Scholar

Kaneda, T., Umeda, S., Ishizaki, Y., Kuo, H. S., Misumi, S., Kai, Y., Kanehisa, N., & Kasai, N. (1989). Azophenolic acerands: Amine-selective coloration and crystal structure of a piperidinium saltex. Journal of the American Chemical Society, 111, 1881–1883. DOI:10.1021/ja00187a054.10.1021/ja00187a054.Search in Google Scholar

Lin, Q., Fu, Y. P., Chen, P., Wei, T. B., & Zhang, Y. M. (2013). Colorimetric chemosensors designed to provide high sensitivity for Hg2+ in aqueous solutions. Dyes and Pigments, 96, 1–6. DOI:10.1016/j.dyepig.2012.06.023.10.1016/j.dyepig.2012.06.023.Search in Google Scholar

Pellico, D., Gómez-Gallego, M., Escudero, R., Ramírez-López, P., Oliván, M., & Sierra, M. A. (2011). C-Branched chiral (racemic) macrocyclic amino acids: Structure of their Ni(II), Zn(II) and Cu(II) complexes. Dalton Transactions, 40, 9145–9153. DOI:10.1039/c1dt10539f.10.1039/c1dt10539f.Search in Google Scholar

Seo, J., Lee, S. S., Gong, W. T., & Hiratani, K. (2008). Novel sulfur-containing amidecrownophanes: Synthesis via tandem Claisen rearrangement and an unpredicted mercuration. Tetrahedron Letters, 49, 3770–3774. DOI:10.1016/j.tetlet.2008.04.013.10.1016/j.tetlet.2008.04.013.Search in Google Scholar

Shinkai, S., Nakaji, T., Nishida, Y., Ogawa, T., & Manabe, O. (1980). Photoresponsive crown ethers. 1. cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. Journal of the American Chemical Society, 102, 5860–5865. DOI:10.1021/ja00538a026.10.1021/ja00538a026.Search in Google Scholar

Takaishi, K., Kawamoto, M., Tsubaki, K., Furuyama, T., Muranaka, A., & Uchiyama, M. (2011). Helical chirality of azobenzenes induced by an intramolecular chiral axis and potential as chiroptical switches. Chemistry – A European Journal, 17, 1778–1782. DOI:10.1002/chem.201003087.10.1002/chem.201003087.Search in Google Scholar

Umehara, T., Kawai, H., Fujiwara, K., & Suzuki, T. (2008). Entropy- and hydrolytic-driven positional switching of macrocycle between imine- and hydrogen-bonding stations in rotaxane-based molecular shuttles. Journal of the American Chemical Society, 130, 13981–13988. DOI:10.1021/ja804888b.10.1021/ja804888b.Search in Google Scholar

Van Doorn, A. R., Schaafstra, R., Bos, M., Harkema, S., Van Eerden, J., Verboom, W., & Reinhoudt, D. N. (1991). Molecular recognition of polar neutral molecules by metallomacrocycles: Synthesis, proton NMR spectroscopy, X-ray structure, electrochemistry and ab initio calculations. The Journal of Organic Chemistry, 56, 6083–6094. DOI:10.1021/jo00021a024.10.1021/jo00021a024.Search in Google Scholar

Vigato, P. A., & Tamburini, S. (2004). The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 248, 1717–2128. DOI:10.1016/j.cct.2003.09.003.10.1016/j.cct.2003.09.003.Search in Google Scholar

Wei, T. B., Gao, G. Y., Qu, W. J., Shi, B.B., Lin, Q., Yao, H., & Zhang, Y. M. (2014). Selective fluorescent sensor for mercury(II) ion based on an easy to prepare double naphthalene Schiff base. Sensors and Actuators B, 199, 142–147. DOI:10.1016/j.snb.2014.03.084.10.1016/j.snb.2014.03.084.Search in Google Scholar

Received: 2015-6-15
Revised: 2015-9-27
Accepted: 2015-10-21
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst
  3. Original Paper
  4. Photocatalytic reduction of nitro aromatic compounds to amines using a nanosized highly active CdS photocatalyst under sunlight and blue LED irradiation
  5. Original Paper
  6. Synthesis of butyrate using a heterogeneous catalyst based on polyvinylpolypyrrolidone
  7. Original Paper
  8. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry
  9. Original Paper
  10. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
  11. Original Paper
  12. Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
  13. Original Paper
  14. Innovative approach to treating waste waters by a membrane capacitive deionisation system
  15. Original Paper
  16. Liquid—liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents
  17. Original Paper
  18. Design of extractive distillation process with mixed entraineri‡
  19. Original Paper
  20. Kinetic study of non-reactive iron removal from iron-gall inks
  21. Original Paper
  22. Chemoenzymatic polycondensation of para-benzylamino phenol
  23. Original Paper
  24. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-lH-benzotriazole and 5-chloro-lH-benzotriazole
  25. Original Paper
  26. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
  27. Original Paper
  28. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides
  29. Short Communication
  30. Convenient amidation of carboxyl group of carboxyphenylboronic acids
  31. Short Communication
  32. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
  33. Erratum
  34. Erratum to “Adriana Bakalova, Boryana Nikolova-Mladenova, Rossen Buyukliev, Emiliya Cherneva, Georgi Momekov, Darvin Ivanov: Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin”, Chemical Papers 70 (1) 93–100 (2016)*
  35. Erratum
  36. Erratum to “Martyna Rzelewska, Monika Baczyńska, Magdalena Regel-Rosocka, Maciej Wiśniewski: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions”, Chemical Papers 70 (4) 454–460 (2016)*
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0241/html
Scroll to top button