Startseite Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions

  • Mesut S. Pinar , Ayten Dizkirici EMAIL logo und Oktay Yigit
Veröffentlicht/Copyright: 8. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 70 Heft 10

Abstract

In this study, both morphological characters and molecular techniques were used to determine the taxonomic position of the local endemic Agropyron deweyi within the genus. Plant length, inflorescence type, flower, leaf, spike, spikelet, indumentum and lemma structures were studied as morphological characters. DNA sequences of the nuclear ribosomal DNA internal transcribed spacer region (nrDNA ITS) and four chloroplast DNA regions [trnT-trnL intergenic spacer (IGS), trnL intron, trnL-trnF IGS and matK gene] were analyzed as part of molecular investigations. The results demonstrated that no remarkable morphological differences exist among studied specimens of A. deweyi and A. cristatum complex. Based on 12 sequences of 4 Agropyron taxa produced from the current study and different numbers of sequences obtained from GenBank, our results support the conclusion that the taxonomic status of Agropyron deweyi is synonymous to that of the species A. cristatum. Sequence divergences were estimated using Kimura two-parameter model, and the phylogenetic analyses were performed using the maximum parsimony (MP) and maximum likelihood (ML) methods. No genetic variation was observed among samples of native A. deweyi and A. cristatum complex regardless of the analyzed region. Agropyron deweyi was especially very similar to A. cristatum subsp. pectinatum var. pectinatum in terms of morphological characters such as inflorescence rachis tough at maturity, spikelets with distinct gaps, indumentum glabrous, and lemma glabrous. Therefore, when all morphological and molecular results are taken into account, A. deweyi and A. cristatum subsp. pectinatum var. pectinatum should be considered as synonym.

References

Aliscioni S., Bell H.L., Besnard G., Christin P.A., Columbus J.T., Duvall M.R., Edwards E.J., Giussani L., Hasenstab- Lehman K., Hilu K.W., Hodkinson T.R., Ingram A.L., Kellog E.A., Mashayekhi S., Morrone O., Osborne C.P., Salamin N., Schaefer H., Spriggs E., Smith S.A. & Zuloaga F. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 193: 304-312.10.1111/j.1469-8137.2011.03972.xSuche in Google Scholar PubMed

Artyukova E.V., Gontcharov A.A., Kozyrenko M.M., Reunova G.D. & Zhuravlev Y.N. 2005. Phylogenetic relationships of the far Eastern Araliaceae inferred from ITS sequences of nuclear rDNA. Russ. J. Gen. 41: 649-658.10.1007/s11177-005-0140-7Suche in Google Scholar

Asay K.H., Jensen K.B., Hsiao C. & Dewey D.R. 1992. Probable origin of standard crested wheatgrass, Agropyron desertorum (Fisch ex Link) Schultes. Can. J. Plant Sci. 72: 763-772.Suche in Google Scholar

Asay K.H. & Jensen K.B. 1996. Wheatgrasses, pp. 691-724. In: Moser L.E., Buxton D.R. & Casler M.D. (eds), Cool-season forage grasses No: 34, Chap. 22 Madison, WI, USA.10.2134/agronmonogr34.c22Suche in Google Scholar

Baldwin B.G., Sanderson M.J., Porter J.M.,Wojciechowski M.F., Campbell C.S. & Donoghue, M.J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Miss. Bot.l Gard. 82: 247-277.10.2307/2399880Suche in Google Scholar

Baum B.R., Yen C. & Yang J.L. 2008. Neotypification of A. deweyi (Poaceae, Triticeae). Taxon 18: 415-417.Suche in Google Scholar

Bentham G. 1882. Notes on Gramineae. The Botanical Journal of the Linnean Society 18: 14-134.10.1111/j.1095-8339.1881.tb00355.xSuche in Google Scholar

Bing-Cao-Shu 2006. Agropyron Gaertn., pp. 437-439. In: Wu Z.Y., Raven P.H. & Hong D.Y. (eds), Flora of China Vol. 22 (Poaceae). Science Press, Beijing, Peoples Republic of China and Missouri Botanical Garden Press, St. Louis, Missouri.Suche in Google Scholar

Bor N.L. 1968. Agropyron Gaertn., pp. 208-224. In: Townsend C.C., Guest E. & Al-Rawi A. (eds), Flora of Iraq Vol. 9. Ministry of Agriculture, Baghdad.Suche in Google Scholar

Bor N.L. 1970. Agropyron Gaertn., pp.150-184. In: Rechinger K.H. (ed.), Flora Iranica, Vol. 70/30. Graz, Austria: Akademische Druk-Und Verlagsanstalt, Wien.Suche in Google Scholar

Cabi E. 2010. Taxonomic revision of the tribe Triticeae Dumortier (Poaceae) in Turkey. PhD METU, Ankara.Suche in Google Scholar

Catalan P., Muller J., Hasterok R., Jenkins G., Mur L.A., Langdon T., Betekhtin A., Siwinska D., Pimentel M. & Lopez- Alvarez D. 2012. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109: 385-405.10.1093/aob/mcr294Suche in Google Scholar PubMed PubMed Central

Che Y., Yang Y., Yang X., Li X. & Li L. 2015. Phylogenetic relationship and diversity among Agropyron Gaertn. germplasm using SSRs markers. Plant Syst. Evol. 301: 163-170.10.1007/s00606-014-1062-4Suche in Google Scholar

Chen S.Y., Ma X., Zhang X.Q. & Chen Z.H. 2009. Genetic variation and geographical divergence in Elymus nutans (Poaceae: Triticeae) from west China. Bioch. Syst. Ecol. 37: 716-722.10.1016/j.bse.2009.12.005Suche in Google Scholar

Chen S.Y., Ma X., Zhang X.Q., Huang L.K. & Zhou J.N. 2013. Genetic diversity and relationships among accessions of five crested wheatgrass species (Poaceae: Agropyron) based on gliadin analysis. Gen. Mol. Res. 12: 5704-5713.10.4238/2013.November.18.19Suche in Google Scholar PubMed

Clayton W.D., Vorontsova M.S., Harman K.T. & Williamson H. 2015. GrassBase - The Online World Grass Flora. Available from http://www.kew.org/data/grasses-db.html. (accessed: 05.05.2015).Suche in Google Scholar

Craven K.D., Schardl C.L., Stromberg A., Lindstrom A. & Yoshido R. 2008. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst. Biol. 57: 483-498.10.1080/10635150802172184Suche in Google Scholar PubMed

Davis P.H., Mill R.R. & Tan K. 1988. Flora of Turkey and the East Aegean Islands. Vol. 10 (suppl.) Edinburgh University Press, Edinburgh.Suche in Google Scholar

Dewey D.R. & Asay K.H. 1975. The crested wheatgrasses of Iran. Crop Sci. 15: 844-849.10.2135/cropsci1975.0011183X001500060028xSuche in Google Scholar

Dewey D.R. 1983. Historical and current taxonomic perspectives of Agropyron, Elymus and related genera. Crop Sci. 23: 637-642.Suche in Google Scholar

Dizkirici A., Kaya Z., Cabi E. & Dogan M. 2010. Phylogenetic relationships of Elymus and related genera (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer sequences. Turk. J. Bot. 34: 467-478.10.3906/bot-0912-249Suche in Google Scholar

Dobryakova K.S., Nosov N.N., Dmitrieva V.A., Punina E.O. & Rodionov, A.V. Phylogeny of Elymus L. and related genera (Poaceae) based on nuclear rDNA ITS sequences. Unpublished.Suche in Google Scholar

Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.Suche in Google Scholar

Escobar J.S., Scornavacca C., Cenci A., Guilhaumon C., Santoni S., Douzery E.J., Ranwez V., Glemin S. & David J. 2011. Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol. Biol. 11: 181. Fan X., Liu J., Sha L.N., Sun G.L., Hu Z.Q., Zeng J., Kang H.Y., Zhang H.Q.,Wang Y.,Wang X.L., Zhang L., Ding C.B., Yang R.W., Zheng Y.L. & Zhou Y.H. 2014. Evolutionary pattern of rDNA following polyploidy in Leymus (Triticeae: Poaceae). Mol. Phylog. Evol. 77: 296-306.Suche in Google Scholar

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.10.1111/j.1558-5646.1985.tb00420.xSuche in Google Scholar PubMed

Floyd R., Abebe E., Papert A. & Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Mol. Ecol. 11: 839-850.10.1046/j.1365-294X.2002.01485.xSuche in Google Scholar

Güner A., Aslan S., Ekim T., Vural M. & Baba,c M.T. 2012. Türkiye Bitkileri Listesi (Damarlı Bitkiler). Nezahat G¨okyi˘git Botanik Bah,cesi ve Flora Ara,stırmaları Derne˘gi Yayını, ˙Istanbul Hackel E. 1887. Gramineae, pp. 1-197. In: Engler A. & Prantl K. (eds), Die Naturlichen Pfanzenfamilien 2(2). Leipzig, Engelmann. Hai-Qing Y., Chun Z., Chun-Bang D., Xiao M. & Yong-Hong Z. 2010. Maternal donors of polyploids in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from chloroplast trnL-F sequences. Turk. J. Biol. 34: 335-342. Hebert P.D.N., Cywinska A., Ball S.L. & de Waard J.R. 2003. Biological identification through DNA barcodes. The Royal Society 270: 313-321.Suche in Google Scholar

Hebert P.D.N. & Gregory T.R. 2005. The promise of DNA barcoding for taxonomy. Syst. Biol. 54: 852-859.10.1080/10635150500354886Suche in Google Scholar PubMed

Hilu K.W., Alice L.A. & Liang H. 1999. Phylogeny of Poaceae inferred from matK sequences. Ann. Missouri Bot. Gard. 86: 835-851.10.2307/2666171Suche in Google Scholar

Hsiao C., Wang R.R.C. & Dewey D.R. 1986. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can. J. Gen. Cyt. 28: 109-120.10.1139/g86-015Suche in Google Scholar

Hsiao C., Asay K.H. & Dewey D.R. 1989. Cytogenetic analysis of interspecific hybrids and amphiploids between two diploid crested wheatgrasses, A. mongolicum and A. cristatum. Genome 32: 1079-1084.Suche in Google Scholar

Hsiao C., Chatterton N.J., Asay K.H. & Jensen K.B. 1995 Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38: 221-223.Suche in Google Scholar

Kellogg E.A. 2006. Beyond taxonomy: prospects for understanding morphological diversity in the grasses (Poaceae). Darwiniana 44: 7-17.Suche in Google Scholar

Kim T.W., Kim N.S., Kim J.C. & Fedak G. Variations of 45S rDNA spacers and relationship of E, St, P, Ns, Xm and H genomes among the Triticeae species, Unpublished.Suche in Google Scholar

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.10.1007/BF01731581Suche in Google Scholar PubMed

Li J.H., Bogle A.L. & Klein A.S. 1997. Interspecific relationships and genetic divergence of the disjunct genus Liquidambar (Hamamelidaceae). Rhodora 99: 229-241.Suche in Google Scholar

Liu Q., Ge S., Tang H., Zhang X., Zhu G. & Lu B. 2006. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal transcribed spacer and chloroplast trnL-F sequences. New Fytol. 170: 411-20.10.1111/j.1469-8137.2006.01665.xSuche in Google Scholar PubMed

Löve A. 1984. Conspectus of the Triticeae. Feddes Rep. 95: 425-521.10.1002/fedr.4910950702Suche in Google Scholar

Luo X., Tinker N.A., Fan X., Zhang H., Sha L., Kang H., Ding C., Liu J., Zhang L., Yang R. & Zhou Y. 2012. Phylogeny and maternal donor of Kengyilia species (Poaceae: Triticeae) based on three cpDNA (matK, rbcL and trnH-psbA) sequences. Biochem. Syst. Ecol. 44: 61-69.Suche in Google Scholar

Mason-Gamer R.J., Orme N.L. & Anderson C.M. 2002. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45: 991-1002.10.1139/g02-065Suche in Google Scholar PubMed

Mason-Gamer R.J. 2013. Phylogeny of a genomically diverse group of Elymus (poaceae) allopolyploids reveals multiple levels of reticulation. PLOS ONE 8 (11): e7844910.1371/journal.pone.0078449Suche in Google Scholar PubMed PubMed Central

Melderis A., Humpries C.J., Tutin T.G. & Heathcote S.A. 1980. Tribe Triticeae Dumort., pp. 190-200. In: Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. & Webb D.A. (eds), Flora Europaea Vol. 5. Cambridge University Press, Cambridge, UK.Suche in Google Scholar

Melderis A. 1985. Agropyron (Gaertner), pp. 204-206. In: Davis, P.H. (Ed.) Flora of Turkey and the East Aegean Islands Vol. 9. Edinburgh University Press, Edinburgh.Suche in Google Scholar

Mellish A., Coulman B. & Ferdinandez Y. 2002. Genetic relationships among selected crested wheatgrass cultivars and species determined on the basis of AFLP markers. Crop Sci. 42: 1662-1668.10.2135/cropsci2002.1662Suche in Google Scholar

Mes T.H.M., Kuperus P., Kirschner J., Stepanek J., Oosterveld P., Storchova H. & den Nijs J.C. 2000. Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae: Asteraceae). Genome 43: 634-641.10.1139/gen-43-4-634Suche in Google Scholar

Minaya M., Pimentel M., Mason-Gamer R. & Catalan P. 2013. Distribution and evolutionary dynamics of Stowaway Miniature Inverted repeat Transposable Elements (MITEs) in grasses. Mol. Phylog. Evol. 68: 106-18. Ogihara Y., Isono K., Kojima T., Endo, A., Hanaoka M., Shiina T., Terachi T., Utsugi S., Murata M., Mori N., Takumi S., Ikeo K., Gojobori T., Murai R., Murai K., Matsuoka Y., Ohnishi Y., Tajiri H. & Tsunewaki K. 2002. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol. Gen. Genom. 266: 740-746.Suche in Google Scholar

Petersen G., Seberg O. & Salomon B. 2011. The origin of the H, St, W, and Y genomes in allotetraploid species of Elymus L. and Stenostachys Turcz. (Poaceae: Triticeae). Plant Syst. Evol. 291: 197-21.Suche in Google Scholar

Pleines T., Jakob S.S. & Blattnerl F.R. 2009. Application of non coding DNA regions in intraspecific analyses. Plant Syst. Evol. 282: 281-294.10.1007/s00606-008-0036-9Suche in Google Scholar

Richard R. & Wang C. 2011. Agropyron and Psathyrostachys, pp. 77-108. In: Kole C. (ed.), Wild Crop Relatives: Genomic and Breeding Resources: Cereals. Springer, London.10.1007/978-3-642-14228-4_2Suche in Google Scholar

Rua G.H., Speranza P.R., Vaio M. & Arakaki M. 2010. A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Plant Syst. Evol. 288: 227=-243.10.1007/s00606-010-0327-9Suche in Google Scholar

Saarela J. M., Peterson P.M., Keane R.M., Cayouette J. & Graham S.W. 2007. Molecular Phylogenetics of Bromus (Poaceae: Pooideae) Based on Chloroplast and Nuclear DNA Sequence Data. J. Syst. Evol. Bot. 23: 450-467.10.5642/aliso.20072301.35Suche in Google Scholar

Saarela J.M., Sokoloff P.C., Gillespie L.J., Consaul L.L., & Bull R.D. 2013. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species. PLOS ONE 8 (10): e77982.10.1371/journal.pone.0077982Suche in Google Scholar PubMed PubMed Central

Sakamoto S. 1964. Cytogenetic problems in Agropyron hybrids. Seiken Jiho 16: 38-47.Suche in Google Scholar

Selvaraj D., Sarma R.K. & Sathishkumar R. 2008. Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation 3: 24-27.10.6026/97320630003024Suche in Google Scholar PubMed PubMed Central

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28: 2731-2739.Suche in Google Scholar

Taberlet P., Gielly L., Pautou G. & Bouvet J. 1991. Universal primers for amplification of the three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109.10.1007/BF00037152Suche in Google Scholar PubMed

Tzvelev N.N. 1976. Zlaki SSSR, Grasses of the Soviet Union. Nauka Publ, Leningrad, Russia.Suche in Google Scholar

Tzvelev N.N. 1983. Grasses of Soviet Union. New Delhi, Oxonian.Suche in Google Scholar

Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.Suche in Google Scholar

Vijverberg K. & Bachmann K. 1999. Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genome of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analyses. Mol. Biol. Evol. 16: 1329-1340.10.1093/oxfordjournals.molbev.a026043Suche in Google Scholar

Vijverberg K., Mes T.H.M. & Bachmann K. 1999. Chloroplast DNA evidence for the evolution of Microseris (Asteraceae) in Australia and New Zealand after long-distance dispersal from western North America. Amer. J. Bot. 86: 1448-1463.10.2307/2656926Suche in Google Scholar

Wojciechowski M.F., Sanderson M.J., Baldwin B.G. & Donoghue M.J. 1993. Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot. 80: 711-722.10.1002/j.1537-2197.1993.tb15241.xSuche in Google Scholar

Wojciechowski M.F. 2005. Astragalus (Fabaceae): A molecular phylogenetic perspective. Brittonia 57: 382-396.10.1663/0007-196X(2005)057[0382:AFAMPP]2.0.CO;2Suche in Google Scholar

Yang D.Y., Fushimi H., Cai S.Q. & Komatsu K. 2004. Molecular analysis of Rheum species used as rhei rhizoma based on the chloroplast matK gene sequence and its application for identification. Biol. Pharmac. Bull. 27: 375-383.10.1248/bpb.27.375Suche in Google Scholar

Young N.D. & de Pamphilis C.W. 2000. Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a Group II intron of nonphotosynthetic plants. Mol. Biol. Evol. 17: 1933-1941.10.1093/oxfordjournals.molbev.a026295Suche in Google Scholar

Yousofi M. & Aryavand A. 2004. Determination of ploidy levels of some populations of Agropyron cristatum (Poaceae) in Iran by flow cytometry. Iranian Journal of Science & Technology, Transaction A 28: 137-144.Suche in Google Scholar

Yao H., Song J., Liu C., Luo K., Han J., Li Y., Pang X., Xu H., Zhu Y., Xiao P. & Chen S. 2010. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLOS ONE 5: e13102. 10.1371/journal.pone.0013102Suche in Google Scholar

Yen C., Yang J.L. & Yen Y. 2005. Hitoshi Kihara Askell L¨ove and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phyto. Sinica 43: 82-93. Yu H., Fan X., Zhang C., Ding C., Wang X. & Zhou Y. 2008. Phylogenetic relationships of species in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia 63: 498-505.Suche in Google Scholar

Yun J.F. & Mi F.G. 1989. The species and distribution of the Agropyron Gaerten. Grassland of China 3: 14-17. Suche in Google Scholar

Received: 2015-7-1
Accepted: 2015-9-3
Published Online: 2016-1-8
Published in Print: 2015-10-1

© 2016

Artikel in diesem Heft

  1. An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
  2. A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus
  3. Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
  4. Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
  5. Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia
  6. Species delimitation and population structure in three Onosma (Boraginaceae) species
  7. Glycinebetaine priming improves salt tolerance of wheat
  8. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression
  9. High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures
  10. Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification
  11. Response of green hydra (Hydra viridissima) to variability and directional changes in food availability
  12. Data on some members of the family Tylenchidae (Nematoda: Tylenchina) from Iran
  13. New and firstly recorded oribatid mites from Turkey
  14. Reproductive parameters of four species of water mites (Acari: Hydrachnidia)
  15. A new species of the genus Aeolothrips (Thysanoptera: Aeolothripidae) from Iran
  16. Skull variability of mice and voles inhabiting the territory of a great cormorant colony
  17. High glucose-associated osmolality promotes adipocytogenic differentiation of primary rat osteoblasts in a protein kinase A and phosphatidylinositol 3-kinase/Akt-dependent manner
  18. Direct influence of rooibos-derived compound on rabbit ovarian functions and their response to gonadotropins
  19. Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea
Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2015-0149/html
Button zum nach oben scrollen