Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
Abstract
In this study, both morphological characters and molecular techniques were used to determine the taxonomic position of the local endemic Agropyron deweyi within the genus. Plant length, inflorescence type, flower, leaf, spike, spikelet, indumentum and lemma structures were studied as morphological characters. DNA sequences of the nuclear ribosomal DNA internal transcribed spacer region (nrDNA ITS) and four chloroplast DNA regions [trnT-trnL intergenic spacer (IGS), trnL intron, trnL-trnF IGS and matK gene] were analyzed as part of molecular investigations. The results demonstrated that no remarkable morphological differences exist among studied specimens of A. deweyi and A. cristatum complex. Based on 12 sequences of 4 Agropyron taxa produced from the current study and different numbers of sequences obtained from GenBank, our results support the conclusion that the taxonomic status of Agropyron deweyi is synonymous to that of the species A. cristatum. Sequence divergences were estimated using Kimura two-parameter model, and the phylogenetic analyses were performed using the maximum parsimony (MP) and maximum likelihood (ML) methods. No genetic variation was observed among samples of native A. deweyi and A. cristatum complex regardless of the analyzed region. Agropyron deweyi was especially very similar to A. cristatum subsp. pectinatum var. pectinatum in terms of morphological characters such as inflorescence rachis tough at maturity, spikelets with distinct gaps, indumentum glabrous, and lemma glabrous. Therefore, when all morphological and molecular results are taken into account, A. deweyi and A. cristatum subsp. pectinatum var. pectinatum should be considered as synonym.
References
Aliscioni S., Bell H.L., Besnard G., Christin P.A., Columbus J.T., Duvall M.R., Edwards E.J., Giussani L., Hasenstab- Lehman K., Hilu K.W., Hodkinson T.R., Ingram A.L., Kellog E.A., Mashayekhi S., Morrone O., Osborne C.P., Salamin N., Schaefer H., Spriggs E., Smith S.A. & Zuloaga F. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 193: 304-312.10.1111/j.1469-8137.2011.03972.xSuche in Google Scholar PubMed
Artyukova E.V., Gontcharov A.A., Kozyrenko M.M., Reunova G.D. & Zhuravlev Y.N. 2005. Phylogenetic relationships of the far Eastern Araliaceae inferred from ITS sequences of nuclear rDNA. Russ. J. Gen. 41: 649-658.10.1007/s11177-005-0140-7Suche in Google Scholar
Asay K.H., Jensen K.B., Hsiao C. & Dewey D.R. 1992. Probable origin of standard crested wheatgrass, Agropyron desertorum (Fisch ex Link) Schultes. Can. J. Plant Sci. 72: 763-772.Suche in Google Scholar
Asay K.H. & Jensen K.B. 1996. Wheatgrasses, pp. 691-724. In: Moser L.E., Buxton D.R. & Casler M.D. (eds), Cool-season forage grasses No: 34, Chap. 22 Madison, WI, USA.10.2134/agronmonogr34.c22Suche in Google Scholar
Baldwin B.G., Sanderson M.J., Porter J.M.,Wojciechowski M.F., Campbell C.S. & Donoghue, M.J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Miss. Bot.l Gard. 82: 247-277.10.2307/2399880Suche in Google Scholar
Baum B.R., Yen C. & Yang J.L. 2008. Neotypification of A. deweyi (Poaceae, Triticeae). Taxon 18: 415-417.Suche in Google Scholar
Bentham G. 1882. Notes on Gramineae. The Botanical Journal of the Linnean Society 18: 14-134.10.1111/j.1095-8339.1881.tb00355.xSuche in Google Scholar
Bing-Cao-Shu 2006. Agropyron Gaertn., pp. 437-439. In: Wu Z.Y., Raven P.H. & Hong D.Y. (eds), Flora of China Vol. 22 (Poaceae). Science Press, Beijing, Peoples Republic of China and Missouri Botanical Garden Press, St. Louis, Missouri.Suche in Google Scholar
Bor N.L. 1968. Agropyron Gaertn., pp. 208-224. In: Townsend C.C., Guest E. & Al-Rawi A. (eds), Flora of Iraq Vol. 9. Ministry of Agriculture, Baghdad.Suche in Google Scholar
Bor N.L. 1970. Agropyron Gaertn., pp.150-184. In: Rechinger K.H. (ed.), Flora Iranica, Vol. 70/30. Graz, Austria: Akademische Druk-Und Verlagsanstalt, Wien.Suche in Google Scholar
Cabi E. 2010. Taxonomic revision of the tribe Triticeae Dumortier (Poaceae) in Turkey. PhD METU, Ankara.Suche in Google Scholar
Catalan P., Muller J., Hasterok R., Jenkins G., Mur L.A., Langdon T., Betekhtin A., Siwinska D., Pimentel M. & Lopez- Alvarez D. 2012. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109: 385-405.10.1093/aob/mcr294Suche in Google Scholar PubMed PubMed Central
Che Y., Yang Y., Yang X., Li X. & Li L. 2015. Phylogenetic relationship and diversity among Agropyron Gaertn. germplasm using SSRs markers. Plant Syst. Evol. 301: 163-170.10.1007/s00606-014-1062-4Suche in Google Scholar
Chen S.Y., Ma X., Zhang X.Q. & Chen Z.H. 2009. Genetic variation and geographical divergence in Elymus nutans (Poaceae: Triticeae) from west China. Bioch. Syst. Ecol. 37: 716-722.10.1016/j.bse.2009.12.005Suche in Google Scholar
Chen S.Y., Ma X., Zhang X.Q., Huang L.K. & Zhou J.N. 2013. Genetic diversity and relationships among accessions of five crested wheatgrass species (Poaceae: Agropyron) based on gliadin analysis. Gen. Mol. Res. 12: 5704-5713.10.4238/2013.November.18.19Suche in Google Scholar PubMed
Clayton W.D., Vorontsova M.S., Harman K.T. & Williamson H. 2015. GrassBase - The Online World Grass Flora. Available from http://www.kew.org/data/grasses-db.html. (accessed: 05.05.2015).Suche in Google Scholar
Craven K.D., Schardl C.L., Stromberg A., Lindstrom A. & Yoshido R. 2008. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst. Biol. 57: 483-498.10.1080/10635150802172184Suche in Google Scholar PubMed
Davis P.H., Mill R.R. & Tan K. 1988. Flora of Turkey and the East Aegean Islands. Vol. 10 (suppl.) Edinburgh University Press, Edinburgh.Suche in Google Scholar
Dewey D.R. & Asay K.H. 1975. The crested wheatgrasses of Iran. Crop Sci. 15: 844-849.10.2135/cropsci1975.0011183X001500060028xSuche in Google Scholar
Dewey D.R. 1983. Historical and current taxonomic perspectives of Agropyron, Elymus and related genera. Crop Sci. 23: 637-642.Suche in Google Scholar
Dizkirici A., Kaya Z., Cabi E. & Dogan M. 2010. Phylogenetic relationships of Elymus and related genera (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer sequences. Turk. J. Bot. 34: 467-478.10.3906/bot-0912-249Suche in Google Scholar
Dobryakova K.S., Nosov N.N., Dmitrieva V.A., Punina E.O. & Rodionov, A.V. Phylogeny of Elymus L. and related genera (Poaceae) based on nuclear rDNA ITS sequences. Unpublished.Suche in Google Scholar
Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.Suche in Google Scholar
Escobar J.S., Scornavacca C., Cenci A., Guilhaumon C., Santoni S., Douzery E.J., Ranwez V., Glemin S. & David J. 2011. Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol. Biol. 11: 181. Fan X., Liu J., Sha L.N., Sun G.L., Hu Z.Q., Zeng J., Kang H.Y., Zhang H.Q.,Wang Y.,Wang X.L., Zhang L., Ding C.B., Yang R.W., Zheng Y.L. & Zhou Y.H. 2014. Evolutionary pattern of rDNA following polyploidy in Leymus (Triticeae: Poaceae). Mol. Phylog. Evol. 77: 296-306.Suche in Google Scholar
Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.10.1111/j.1558-5646.1985.tb00420.xSuche in Google Scholar PubMed
Floyd R., Abebe E., Papert A. & Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Mol. Ecol. 11: 839-850.10.1046/j.1365-294X.2002.01485.xSuche in Google Scholar
Güner A., Aslan S., Ekim T., Vural M. & Baba,c M.T. 2012. Türkiye Bitkileri Listesi (Damarlı Bitkiler). Nezahat G¨okyi˘git Botanik Bah,cesi ve Flora Ara,stırmaları Derne˘gi Yayını, ˙Istanbul Hackel E. 1887. Gramineae, pp. 1-197. In: Engler A. & Prantl K. (eds), Die Naturlichen Pfanzenfamilien 2(2). Leipzig, Engelmann. Hai-Qing Y., Chun Z., Chun-Bang D., Xiao M. & Yong-Hong Z. 2010. Maternal donors of polyploids in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from chloroplast trnL-F sequences. Turk. J. Biol. 34: 335-342. Hebert P.D.N., Cywinska A., Ball S.L. & de Waard J.R. 2003. Biological identification through DNA barcodes. The Royal Society 270: 313-321.Suche in Google Scholar
Hebert P.D.N. & Gregory T.R. 2005. The promise of DNA barcoding for taxonomy. Syst. Biol. 54: 852-859.10.1080/10635150500354886Suche in Google Scholar PubMed
Hilu K.W., Alice L.A. & Liang H. 1999. Phylogeny of Poaceae inferred from matK sequences. Ann. Missouri Bot. Gard. 86: 835-851.10.2307/2666171Suche in Google Scholar
Hsiao C., Wang R.R.C. & Dewey D.R. 1986. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can. J. Gen. Cyt. 28: 109-120.10.1139/g86-015Suche in Google Scholar
Hsiao C., Asay K.H. & Dewey D.R. 1989. Cytogenetic analysis of interspecific hybrids and amphiploids between two diploid crested wheatgrasses, A. mongolicum and A. cristatum. Genome 32: 1079-1084.Suche in Google Scholar
Hsiao C., Chatterton N.J., Asay K.H. & Jensen K.B. 1995 Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38: 221-223.Suche in Google Scholar
Kellogg E.A. 2006. Beyond taxonomy: prospects for understanding morphological diversity in the grasses (Poaceae). Darwiniana 44: 7-17.Suche in Google Scholar
Kim T.W., Kim N.S., Kim J.C. & Fedak G. Variations of 45S rDNA spacers and relationship of E, St, P, Ns, Xm and H genomes among the Triticeae species, Unpublished.Suche in Google Scholar
Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.10.1007/BF01731581Suche in Google Scholar PubMed
Li J.H., Bogle A.L. & Klein A.S. 1997. Interspecific relationships and genetic divergence of the disjunct genus Liquidambar (Hamamelidaceae). Rhodora 99: 229-241.Suche in Google Scholar
Liu Q., Ge S., Tang H., Zhang X., Zhu G. & Lu B. 2006. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal transcribed spacer and chloroplast trnL-F sequences. New Fytol. 170: 411-20.10.1111/j.1469-8137.2006.01665.xSuche in Google Scholar PubMed
Löve A. 1984. Conspectus of the Triticeae. Feddes Rep. 95: 425-521.10.1002/fedr.4910950702Suche in Google Scholar
Luo X., Tinker N.A., Fan X., Zhang H., Sha L., Kang H., Ding C., Liu J., Zhang L., Yang R. & Zhou Y. 2012. Phylogeny and maternal donor of Kengyilia species (Poaceae: Triticeae) based on three cpDNA (matK, rbcL and trnH-psbA) sequences. Biochem. Syst. Ecol. 44: 61-69.Suche in Google Scholar
Mason-Gamer R.J., Orme N.L. & Anderson C.M. 2002. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45: 991-1002.10.1139/g02-065Suche in Google Scholar PubMed
Mason-Gamer R.J. 2013. Phylogeny of a genomically diverse group of Elymus (poaceae) allopolyploids reveals multiple levels of reticulation. PLOS ONE 8 (11): e7844910.1371/journal.pone.0078449Suche in Google Scholar PubMed PubMed Central
Melderis A., Humpries C.J., Tutin T.G. & Heathcote S.A. 1980. Tribe Triticeae Dumort., pp. 190-200. In: Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. & Webb D.A. (eds), Flora Europaea Vol. 5. Cambridge University Press, Cambridge, UK.Suche in Google Scholar
Melderis A. 1985. Agropyron (Gaertner), pp. 204-206. In: Davis, P.H. (Ed.) Flora of Turkey and the East Aegean Islands Vol. 9. Edinburgh University Press, Edinburgh.Suche in Google Scholar
Mellish A., Coulman B. & Ferdinandez Y. 2002. Genetic relationships among selected crested wheatgrass cultivars and species determined on the basis of AFLP markers. Crop Sci. 42: 1662-1668.10.2135/cropsci2002.1662Suche in Google Scholar
Mes T.H.M., Kuperus P., Kirschner J., Stepanek J., Oosterveld P., Storchova H. & den Nijs J.C. 2000. Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae: Asteraceae). Genome 43: 634-641.10.1139/gen-43-4-634Suche in Google Scholar
Minaya M., Pimentel M., Mason-Gamer R. & Catalan P. 2013. Distribution and evolutionary dynamics of Stowaway Miniature Inverted repeat Transposable Elements (MITEs) in grasses. Mol. Phylog. Evol. 68: 106-18. Ogihara Y., Isono K., Kojima T., Endo, A., Hanaoka M., Shiina T., Terachi T., Utsugi S., Murata M., Mori N., Takumi S., Ikeo K., Gojobori T., Murai R., Murai K., Matsuoka Y., Ohnishi Y., Tajiri H. & Tsunewaki K. 2002. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol. Gen. Genom. 266: 740-746.Suche in Google Scholar
Petersen G., Seberg O. & Salomon B. 2011. The origin of the H, St, W, and Y genomes in allotetraploid species of Elymus L. and Stenostachys Turcz. (Poaceae: Triticeae). Plant Syst. Evol. 291: 197-21.Suche in Google Scholar
Pleines T., Jakob S.S. & Blattnerl F.R. 2009. Application of non coding DNA regions in intraspecific analyses. Plant Syst. Evol. 282: 281-294.10.1007/s00606-008-0036-9Suche in Google Scholar
Richard R. & Wang C. 2011. Agropyron and Psathyrostachys, pp. 77-108. In: Kole C. (ed.), Wild Crop Relatives: Genomic and Breeding Resources: Cereals. Springer, London.10.1007/978-3-642-14228-4_2Suche in Google Scholar
Rua G.H., Speranza P.R., Vaio M. & Arakaki M. 2010. A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Plant Syst. Evol. 288: 227=-243.10.1007/s00606-010-0327-9Suche in Google Scholar
Saarela J. M., Peterson P.M., Keane R.M., Cayouette J. & Graham S.W. 2007. Molecular Phylogenetics of Bromus (Poaceae: Pooideae) Based on Chloroplast and Nuclear DNA Sequence Data. J. Syst. Evol. Bot. 23: 450-467.10.5642/aliso.20072301.35Suche in Google Scholar
Saarela J.M., Sokoloff P.C., Gillespie L.J., Consaul L.L., & Bull R.D. 2013. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species. PLOS ONE 8 (10): e77982.10.1371/journal.pone.0077982Suche in Google Scholar PubMed PubMed Central
Sakamoto S. 1964. Cytogenetic problems in Agropyron hybrids. Seiken Jiho 16: 38-47.Suche in Google Scholar
Selvaraj D., Sarma R.K. & Sathishkumar R. 2008. Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation 3: 24-27.10.6026/97320630003024Suche in Google Scholar PubMed PubMed Central
Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28: 2731-2739.Suche in Google Scholar
Taberlet P., Gielly L., Pautou G. & Bouvet J. 1991. Universal primers for amplification of the three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109.10.1007/BF00037152Suche in Google Scholar PubMed
Tzvelev N.N. 1976. Zlaki SSSR, Grasses of the Soviet Union. Nauka Publ, Leningrad, Russia.Suche in Google Scholar
Tzvelev N.N. 1983. Grasses of Soviet Union. New Delhi, Oxonian.Suche in Google Scholar
Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.Suche in Google Scholar
Vijverberg K. & Bachmann K. 1999. Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genome of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analyses. Mol. Biol. Evol. 16: 1329-1340.10.1093/oxfordjournals.molbev.a026043Suche in Google Scholar
Vijverberg K., Mes T.H.M. & Bachmann K. 1999. Chloroplast DNA evidence for the evolution of Microseris (Asteraceae) in Australia and New Zealand after long-distance dispersal from western North America. Amer. J. Bot. 86: 1448-1463.10.2307/2656926Suche in Google Scholar
Wojciechowski M.F., Sanderson M.J., Baldwin B.G. & Donoghue M.J. 1993. Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot. 80: 711-722.10.1002/j.1537-2197.1993.tb15241.xSuche in Google Scholar
Wojciechowski M.F. 2005. Astragalus (Fabaceae): A molecular phylogenetic perspective. Brittonia 57: 382-396.10.1663/0007-196X(2005)057[0382:AFAMPP]2.0.CO;2Suche in Google Scholar
Yang D.Y., Fushimi H., Cai S.Q. & Komatsu K. 2004. Molecular analysis of Rheum species used as rhei rhizoma based on the chloroplast matK gene sequence and its application for identification. Biol. Pharmac. Bull. 27: 375-383.10.1248/bpb.27.375Suche in Google Scholar
Young N.D. & de Pamphilis C.W. 2000. Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a Group II intron of nonphotosynthetic plants. Mol. Biol. Evol. 17: 1933-1941.10.1093/oxfordjournals.molbev.a026295Suche in Google Scholar
Yousofi M. & Aryavand A. 2004. Determination of ploidy levels of some populations of Agropyron cristatum (Poaceae) in Iran by flow cytometry. Iranian Journal of Science & Technology, Transaction A 28: 137-144.Suche in Google Scholar
Yao H., Song J., Liu C., Luo K., Han J., Li Y., Pang X., Xu H., Zhu Y., Xiao P. & Chen S. 2010. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLOS ONE 5: e13102. 10.1371/journal.pone.0013102Suche in Google Scholar
Yen C., Yang J.L. & Yen Y. 2005. Hitoshi Kihara Askell L¨ove and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phyto. Sinica 43: 82-93. Yu H., Fan X., Zhang C., Ding C., Wang X. & Zhou Y. 2008. Phylogenetic relationships of species in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia 63: 498-505.Suche in Google Scholar
Yun J.F. & Mi F.G. 1989. The species and distribution of the Agropyron Gaerten. Grassland of China 3: 14-17. Suche in Google Scholar
© 2016
Artikel in diesem Heft
- An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
- A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus
- Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
- Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
- Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia
- Species delimitation and population structure in three Onosma (Boraginaceae) species
- Glycinebetaine priming improves salt tolerance of wheat
- The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression
- High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures
- Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification
- Response of green hydra (Hydra viridissima) to variability and directional changes in food availability
- Data on some members of the family Tylenchidae (Nematoda: Tylenchina) from Iran
- New and firstly recorded oribatid mites from Turkey
- Reproductive parameters of four species of water mites (Acari: Hydrachnidia)
- A new species of the genus Aeolothrips (Thysanoptera: Aeolothripidae) from Iran
- Skull variability of mice and voles inhabiting the territory of a great cormorant colony
- High glucose-associated osmolality promotes adipocytogenic differentiation of primary rat osteoblasts in a protein kinase A and phosphatidylinositol 3-kinase/Akt-dependent manner
- Direct influence of rooibos-derived compound on rabbit ovarian functions and their response to gonadotropins
- Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea
Artikel in diesem Heft
- An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
- A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus
- Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
- Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
- Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia
- Species delimitation and population structure in three Onosma (Boraginaceae) species
- Glycinebetaine priming improves salt tolerance of wheat
- The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression
- High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures
- Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification
- Response of green hydra (Hydra viridissima) to variability and directional changes in food availability
- Data on some members of the family Tylenchidae (Nematoda: Tylenchina) from Iran
- New and firstly recorded oribatid mites from Turkey
- Reproductive parameters of four species of water mites (Acari: Hydrachnidia)
- A new species of the genus Aeolothrips (Thysanoptera: Aeolothripidae) from Iran
- Skull variability of mice and voles inhabiting the territory of a great cormorant colony
- High glucose-associated osmolality promotes adipocytogenic differentiation of primary rat osteoblasts in a protein kinase A and phosphatidylinositol 3-kinase/Akt-dependent manner
- Direct influence of rooibos-derived compound on rabbit ovarian functions and their response to gonadotropins
- Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea