An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
-
Abdul Qayyum Rao
, Muhammad Azmat Ullah Khan
Abstract
Plants are the primary source of nutrition and essential to maintain life on earth. They have evolved very delicate and advanced photo-sensory antennae to sense their outer environment and transduce the received information for their growth and development accordingly. This “light switch” phenomenon of plants has slowly being unraveled and various plant photoreceptors, their role in downstream molecular signaling, mutual interaction, response to circadian cycle and light signals have been discovered. The photosensory antennae in plants; phytochromes, cryptochromes and phototropins play a very crucial role in sensing the ambient light intensities. By direct interaction with the environment through these photosensory antennae, plants shift their homeostasis to regulate their growth and development. The phytochrome light receptors of plants are responsive to R/FR light and by inducing signaling pathways, trigger the physiological responses such as germination and flowering. The phytochromes also directly contribute to plant development by affecting its photosynthetic rate. To elucidate the role of phytochromes in plant metabolism, this review will focus on the importance of phytochromes, their mechanism of action and their application as an emerging field in plant biology.
References
Adam E., Kircher S., Liu P., Merai Z., Gonzalez-Schain N., Hörner M., Viczian A., Monte E., Sharrock R.A. & Schäfer E. 2013. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red lightinduced signaling. New Phytologist. 200: 86-96.Search in Google Scholar
Allen T., Koustenis A., Theodorou G., Somers D.E., Kay S.A., Whitelam G.C. & Devlin P.F. 2006. Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell Online 18: 2506-2516.10.1105/tpc.105.037358Search in Google Scholar PubMed PubMed Central
Andres F., Galbraith D.W., Talon M. & Domingo C. 2009. Analysis of photoperiod sensitivity sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol. 151: 681-690.10.1104/pp.109.139097Search in Google Scholar PubMed PubMed Central
Bae G. & Choi G. 2008. Decoding of light signals by plant phytochromes and their interacting proteins. Annu. Rev. Plant Biol. 59: 281-311.10.1146/annurev.arplant.59.032607.092859Search in Google Scholar PubMed
Batschauer A., 2003. Photoreceptors and light signalling. Royal Society of Chemistry.10.1039/9781847551665Search in Google Scholar
Batutis E.J. & Ewing E.E. 1982. Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol. 69: 672-674.10.1104/pp.69.3.672Search in Google Scholar PubMed PubMed Central
Borucka J. & Fellner M. 2012. Auxin binding proteins ABP1 and ABP4 are involved in the light- and auxin-induced downregulation of phytochrome gene PHYB in maize (Zea mays L.) mesocotyl. Plant Growth Regul. 68: 503-509.10.1007/s10725-012-9719-xSearch in Google Scholar
Bussell A.N. & Kehoe D.M. 2013. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria. Proc. Natl. Acad. Sci. USA.110: 12834-12839.10.1073/pnas.1303371110Search in Google Scholar PubMed PubMed Central
ButlerW.L., Norris K., Siegelman H. & Hendricks S. 1959. Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. USA 45: 1703.Search in Google Scholar
Chen F., Shi X., Chen L., Dai M., Zhou Z., Shen Y., Li J., Li G., Wei N. & Deng X.W. 2012. Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. The Plant Cell Online. 24: 1907-1920.10.1105/tpc.112.097733Search in Google Scholar PubMed PubMed Central
Craufurd P. &Wheeler T. 2009. Climate change and the flowering time of annual crops. J. Exp. Bot. 60: 2529-2539. de Carbonnel M., Davis P., Roelfsema M.R.G., Inoue S.-I., Schepens I., Lariguet P., Geisler M., Shimazaki K.-I., Hangarter R. & Fankhauser C. 2010. The Arabidopsis phytochrome kinase substrate protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol. 152: 1391-1405.Search in Google Scholar
Donohue K., Heschel M.S., Chiang G.C.K., Butler C.M. & Barua D. 2007. Phytochrome mediates germination responses to multiple seasonal cues. Plant, Cell & Environ. 30: 202-212.Search in Google Scholar
Dunwell J.M. 2000. Transgenic approaches to crop improvement. J. Exp. Bot. 51: 487-496.10.1093/jexbot/51.suppl_1.487Search in Google Scholar PubMed
Endo M., Nakamura S., Araki T., Mochizuki N. & Nagatani A. 2005. Phytochrome B in the mesophyll delays flowering by suppressing flowering locus T expression in Arabidopsis vascular bundles. Plant Cell Online 17: 1941-1952.10.1105/tpc.105.032342Search in Google Scholar PubMed PubMed Central
Fankhauser C., Yeh K.C., Clark J., Zhang H., Elich T.D. & Chory J. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539-1541.Search in Google Scholar
Fernie A.R. & Willmitzer L. 2001. Molecular and biochemical triggers of potato tuber development. Plant Physiol. 127: 1459-1465.10.1104/pp.010764Search in Google Scholar
Fischer A.J. & Lagarias J.C. 2004. Harnessing phytochrome’s glowing potential. Proc. Natl. Acad. Sci. USA 101: 17334-17339.10.1073/pnas.0407645101Search in Google Scholar
Franklin K.A. & Quail P.H. 2010. Phytochrome functions in Arabidopsis development. J. Exp Bot. 61: 11-24.10.1093/jxb/erp304Search in Google Scholar
Gayle H. & Hamilton H. 1983. Plant regeneration from callus tissue of (Gossypium hirsutum L.). Plant Sci. Lett. 3: 89-93.10.1016/0304-4211(83)90102-5Search in Google Scholar
Gutu A. & Kehoe D.M. 2012. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol. Plant. 5: 1-13.Search in Google Scholar
Hendricks S. & Borthwick H. 1959. Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. Proc. Natl. Acad. Sci. USA. 45: 344.10.1073/pnas.45.3.344Search in Google Scholar PubMed PubMed Central
Hughes J. 2013. Phytochrome cytoplasmic signaling. Annu. Rev Plant Biol. 64: 377-402.10.1146/annurev-arplant-050312-120045Search in Google Scholar PubMed
Husaineid S.S., Kok R.A., Schreuder M.E., Hanumappa M., Cordonnier-Pratt M.M., Pratt L.H., van der Plas L.H. & van der Krol A.R. 2007. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception. J. Exp. Bot. 58: 615-626.10.1093/jxb/erl253Search in Google Scholar PubMed
Ishikawa R., Aoki M., Kurotani K., Yokoi S., Shinomura T., Takano M. & Shimamoto K. 2011. Phytochrome B regulates Heading date 1 (Hd1)/mediated expression of rice florigen Hd3a and critical day length in rice. Mol. Genet. Genomics 285: 461-470.10.1007/s00438-011-0621-4Search in Google Scholar PubMed
Itoh H., Nonoue Y., Yano M. & Izawa T. 2010. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat. Genet. 42: 635-638.10.1038/ng.606Search in Google Scholar PubMed
Jackson S.D., James P., Prat S. & Thomas B. 1998. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiol. 117: 29-32.10.1104/pp.117.1.29Search in Google Scholar PubMed PubMed Central
Jaedicke K., Lichtenthäler A.L., Meyberg R., Zeidler M. & Hughes J. 2012. A phytochrome-phototropin light signaling complex at the plasma membrane. Proc. Natl. Acad. Sci. USA 109: 12231-12236.10.1073/pnas.1120203109Search in Google Scholar PubMed PubMed Central
Jen J.J., Norris K.H. & Watada A.E. 1977. In vivo measurement of phytochrome in tomato fruit. Plant Physiol. 59: 628-629.10.1104/pp.59.4.628Search in Google Scholar PubMed PubMed Central
Jiao Y., Lau O.S. & Deng X.W. 2007. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8: 217-230.10.1038/nrg2049Search in Google Scholar PubMed
Karniol B. & Vierstra R.D., 2006. Structure, function, and evolution of microbial phytochromes, Photomorphogenesis in Plants and Bacteria. Springer, pp. 65-98.10.1007/1-4020-3811-9_6Search in Google Scholar
Kasperbauer M.J. 1988. Phytochrome involvement in regulation of the photosynthetic apparatus and plant adaptation. Plant Physiol. Biochem. 26: 519-524.Search in Google Scholar
Kasperbauer M.J. 2000. Strawberry yield over red versus black plastic mulch. Crop Sci. 40: 171-174.10.2135/cropsci2000.401171xSearch in Google Scholar
Kasperbauer M.J. 2008. Phytochrome regulation of morphogenesis in green plants: from the beltsville spectrograph to colored mulch in the field. Photochem. Photobiol. 56: 823-832.10.1111/j.1751-1097.1992.tb02239.xSearch in Google Scholar
Kasperbauer M.J. & Hamilton J.L. 1984. Chloroplast structure and starch grain accumulation in leaves that received different red and far-red levels during development. Plant Physiol. 74: 967-970.10.1104/pp.74.4.967Search in Google Scholar PubMed PubMed Central
Kebrom T.H., Burson B.L. & Finlayson S.A. 2006. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 140: 1109-1117.10.1104/pp.105.074856Search in Google Scholar PubMed PubMed Central
Keller M.M., Jaillais Y., Pedmale U.V., Moreno J.E., Chory J. & Ballare C.L. 2011. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67: 195-207. Komiya R., Yokoi S. & Shimamoto K. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136: 3443-3450.Search in Google Scholar
Lee Y.S., Jeong D.H., Lee D.Y., Yi J., Ryu C.H., Kim S.L., Jeong H.J., Choi S.C., Jin P. & Yang J. 2010. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J. 63: 18-30.10.1111/j.1365-313X.2010.04226.xSearch in Google Scholar PubMed
Li J., Li G., Wang H. & Wang Deng X. 2011. Phytochrome signaling mechanisms. Arabidopsis Book 9: Libenson S., Rodriguez V., Pereira M.L., Sanchez R. & Casal J. 2002. Low red to far-red ratios reaching the stem reduce grain yield in sunflower. Crop Sci. 42: 1180-1185.Search in Google Scholar
Mannen K., Matsumoto T., Takahashi S., Yamaguchi Y., Tsukagoshi M., Sano R., Suzuki H., Sakurai N., Shibata D. & Koyama T. 2014. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochem. Bioph. Res. Co. 443: 768-774.10.1016/j.bbrc.2013.12.040Search in Google Scholar PubMed
Mohamed B.B., Sarwar M.B., Hassan S., Rashid B., Aftab B. & Hussain T. 2015. Tolerance of Roselle (Hibiscus sabdariffa L.) genotypes to drought stress at vegetative stage. Adv. Life Sci. 2 (2): 74-82.Search in Google Scholar
Monteith J. 1965. Light distribution and photosynthesis in field crops. Ann. Bot. 29: 17-37.10.1093/oxfordjournals.aob.a083934Search in Google Scholar
Ni M., Tepperman J.M. & Quail P.H. 1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 781-784.10.1038/23500Search in Google Scholar PubMed
Park E., Park J., Kim J., Nagatani A., Lagarias J.C. & Choi G. 2012. Phytochrome B inhibits binding of phytochromeinteracting factors to their target promoters. Plant J. 72: 537-546.10.1111/j.1365-313X.2012.05114.xSearch in Google Scholar PubMed PubMed Central
Pfeiffer A., Nagel M.K., Popp C., W¨ust F., Bindics J., Viczian A., Hiltbrunner A., Nagy F., Kunkel T. & Schäfer E. 2012.Search in Google Scholar
Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc. Natl. Acad. Sci. USA 109: 5892-5897.10.1073/pnas.1120764109Search in Google Scholar PubMed PubMed Central
Rao A.Q., Bakhsh A., Mehmood A., Shahid A.A., Shahzad K., Malik A. & Husnain T. 2013. Variation in expression of Arabidopsis thaliana Phytochrome B gene in cotton due to difference in Transgene copy number. J. Sci. Technol. Tehran Rao A.Q., Bakhsh A., Nasir I.A., Riazuddin S. & Husnain T. 2011a. Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr. J. Biotechnol. 10: 1818-1826.Search in Google Scholar
Rao A.Q., Irfan M., Saleem Z., Nasir I.A., Riazuddin S. & Husnain T. 2011b. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J. Zhejiang Univ-Sc B. 12: 326-334.10.1631/jzus.B1000168Search in Google Scholar PubMed PubMed Central
Rausenberger J., Hussong A., Kircher S., Kirchenbauer D., Timmer J., Nagy F., Schäfer E. & Fleck C. 2010. An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. PLoS One. 5: e10721.10.1371/journal.pone.0010721Search in Google Scholar PubMed PubMed Central
Rizzini L., Favory J.-J., Cloix C., Faggionato D., O’Hara A., Kaiserli E., Baumeister R., Schafer E., Nagy F. & Jenkins G.I. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Sci. Signal. 332: 103.10.1126/science.1200660Search in Google Scholar PubMed
Robson P. & Smith H. 1997. Fundamental and biotechnological applications of phytochrome transgenes. Plant Cell Environ. 20: 831-839.10.1046/j.1365-3040.1997.d01-106.xSearch in Google Scholar
Rockwell N.C., Su Y.-S. & Lagarias J.C. 2006. Phytochome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57: 837.10.1146/annurev.arplant.56.032604.144208Search in Google Scholar PubMed PubMed Central
Rösler J., Jaedicke K. & Zeidler M. 2010. Cytoplasmic phytochrome action. Plant Cell Physiol. 51: 1248-1254.10.1093/pcp/pcq091Search in Google Scholar PubMed
Saďdou A.-A., Clotault J., Couderc M., Mariac C., Devos K.M., Thuillet A.-C., Amoukou I.A. & Vigouroux Y. 2014. Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet. Theor. Appl. Genet. 127: 19-32.Search in Google Scholar
Sakai T., Kagawa T., Kasahara M., Swartz T.E., Christie J.M., Briggs W.R., Wada M. & Okada K. 2001. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA 98: 6969-6974.10.1073/pnas.101137598Search in Google Scholar PubMed PubMed Central
Sanchez R.A., Miguel L., Lima C. & de Lederkremer R.M. 2002. Effect of low water potential on phytochrome-induced germination, endosperm softening and cell-wall mannan degradation in Datura ferox seeds. Seed Sci. Res. 12: 155-164.Search in Google Scholar
Santelli R.V. & Siviero F. 2001. A search for homologues of plant photoreceptor genes and their signaling partners in the sugarcane expressed sequence tag (Sucest) database. Genet. Mol. Biol. 24: 49-53.10.1590/S1415-47572001000100008Search in Google Scholar
Schäfer E. & Bowler C. 2002. Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO reports. 3: 1042-1048.10.1093/embo-reports/kvf222Search in Google Scholar PubMed PubMed Central
Schäfer E. & Nagy F., 2006. Photomorphogenesis in plants and bacteria: Function and Signal Transduction Mechanisms. Springer, 662 pp.Search in Google Scholar
Schittenhelm S., Menge-Hartmann U. & Oldenburg E. 2004. Photosynthesis, carbohydrate metabolism, and yield of phytochrome- B-overexpressing potatoes under different light regimes. Crop Sci. 44: 131-143.Search in Google Scholar
Shin J., Kim K., Kang H., Zulfugarov I.S., Bae G., Lee C.-H., Lee D. & Choi G. 2009a. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochromeinteracting factors. Proc. Natl. Acad.Sci. USA 106: 7660-7665.10.1073/pnas.0812219106Search in Google Scholar PubMed PubMed Central
Shin J., Kim K., Kang H., Zulfugarov I.S., Bae G., Lee C.H., Lee D. & Choi G. 2009b. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochromeinteracting factors. Proc. Natl. Acad. Sci. USA 106: 7660-7665.10.1073/pnas.0812219106Search in Google Scholar
Sineshchekov V., Koppel L., Shor E., Kochetova G., Galland P. & Zeidler M. 2013. Protein Phosphatase Activity and Acidic/Alkaline Balance as Factors Regulating the State of Phytochrome A and its Two Native Pools in the Plant Cell. Photochem. Photobiol. 89: 83-96.10.1111/j.1751-1097.2012.01226.xSearch in Google Scholar PubMed
Sineshchekov V., Loskovich A., Inagaki N. & Takano M. 2007. Two native pools of phytochrome A in monocots: evidence from fluorescence investigations of phytochrome mutants of rice. Photochem. Photobiol. 82: 1116-1122.10.1562/2005-12-10-RA-749Search in Google Scholar PubMed
Sineshchekov V.A. 2010. Fluorescence and photochemical investigations of phytochrome in higher plants. J. Bot. 2010: 1-1510.1155/2010/358372Search in Google Scholar
Smith H. 1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Biol. 46: 289-315.10.1146/annurev.pp.46.060195.001445Search in Google Scholar
Smith H. 2000. Phytochromes and light signal perception by plants - an emerging synthesis. Nature. 407: 585-591.10.1038/35036500Search in Google Scholar PubMed
Smith H. & Whitelam G. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ. 20: 840-844.10.1046/j.1365-3040.1997.d01-104.xSearch in Google Scholar
Song C., Psakis G., Lang C., Mailliet J., Gärtner W., Hughes J. & Matysik J. 2011. Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc. Natl. Acad. Sci. USA 108: 3842-3847.10.1073/pnas.1013377108Search in Google Scholar PubMed PubMed Central
Soy J., Leivar P., Gonzalez-Schain N., Sentandreu M., Prat S., Quail P.H. & Monte E. 2012. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant J.10.1111/j.1365-313X.2012.04992.xSearch in Google Scholar PubMed PubMed Central
Steindler C., Carabelli M., Borello U., Morelli G. & Ruberti I. 1997. Phytochrome A, phytochrome B and other phytochrome( s) regulate ATHB-2 gene expression in etiolated and green Arabidopsis plants. Plant Cell Environ. 20: 759-763.Search in Google Scholar
Strasser B., Sanchez-Lamas M., Yanovsky M.J., Casal J.J. & Cerdan P.D. 2010. Arabidopsis thaliana life without phytochromes. Proc. Natl. Acad. Sci. USA 107: 4776-4781.10.1073/pnas.0910446107Search in Google Scholar PubMed PubMed Central
Sysoeva M.I., Markovskaya E.F. & Sherudilo E.G. 2013. Role of phytochrome B in the development of cold tolerance in cucumber plants under light and in darkness. Russ. J. Plant Physl. 60: 383-387.10.1134/S1021443713020180Search in Google Scholar
Takano M., Inagaki N., Xie X., Yuzurihara N., Hihara F., Ishizuka T., Yano M., Nishimura M., Miyao A. & Hirochika H. 2005. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell Online. 17: 3311-3325.Search in Google Scholar
Tang W., Ji Q., Huang Y., Jiang Z., Bao M., Wang H. & Lin R. 2013. FAR-RED ELONGATED HYPOCOTYL3 and FARRED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiology. 163: 857-866.10.1104/pp.113.224386Search in Google Scholar PubMed PubMed Central
Thiele A., Herold M., Lenk I., Quail P.H. & Gatz C. 1999. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol. 120: 73-82.10.1104/pp.120.1.73Search in Google Scholar PubMed PubMed Central
Torres-Galea P., Huang L.F., Chua N.H. & Bolle C. 2006. The GRAS protein SCL13 is a positive regulator of phytochromedependent red light signaling, but can also modulate phytochrome A responses. Mol. Genet. Genomics. 276: 13-30.Search in Google Scholar
Trupkin S.A., Debrieux D., Hiltbrunner A., Fankhauser C. & Casal J.J. 2007. The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability. Plant Mol. Biol. 63: 669-678.10.1007/s11103-006-9115-xSearch in Google Scholar PubMed
Ulijasz A.T., Cornilescu G., Cornilescu C.C., Zhang J., Rivera M., Markley J.L. & Vierstra R.D. 2010. Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature. 463: 250-254.10.1038/nature08671Search in Google Scholar PubMed PubMed Central
Velazquez Escobar F., Hildebrandt T., Utesch T., Schmitt F.-J., Seuffert I., Schulz C., Michael N., Mroginski M.A., Friedrich T. & Hildebrandt P. 2014. Structural parameters controlling the fluorescence properties of phytochromes. Biochemistry 53: 20-29.10.1021/bi401287uSearch in Google Scholar PubMed
Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P.M., Heuvelink E. & Millenaar F.F. 2014. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Comm. 5: 4549.10.1038/ncomms5549Search in Google Scholar PubMed
Vogelmann T.C. 1989. Penetration of light into plants. Photochem. Photobiol. 50: 895-902.10.1111/j.1751-1097.1989.tb02919.xSearch in Google Scholar
Wagner J.R., Brunzelle J.S., Forest K.T. & Vierstra R.D. 2005. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature. 438: 325-331.10.1038/nature04118Search in Google Scholar PubMed
Wallerstein I. 2001. Long day plants transformed with phytochrome characterized by altered flowering response to day length. U.S. Patent Application 10/451, 369.Search in Google Scholar
Wang Q., Zhu Z., Ozkardesh K. & Lin C. 2012. Phytochromes and phytohormones: The shrinking degree of separation. Mol. Plant. 6: 5-7.10.1093/mp/sss102Search in Google Scholar PubMed PubMed Central
Wei X., Xu J., Guo H., Jiang L., Chen S., Yu C., Zhou Z., Hu P., Zhai H. & Wan J. 2010. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153: 1747-1758.Search in Google Scholar
Weidler G., zur Oven-Krockhaus S., Heunemann M., Orth C., Schleifenbaum F., Harter K., Hoecker U. & Batschauer A. 2012. Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A. Plant Cell Online. 24: 2610-2623.10.1105/tpc.112.098210Search in Google Scholar PubMed PubMed Central
Wigge P.A. 2013. Ambient temperature signalling in plants. Curr. Opin. Plant Biol. 16: 661-666.10.1016/j.pbi.2013.08.004Search in Google Scholar PubMed
Xu X., Vreugdenhil D. & Lammeren A.A.M. 1998. Cell division and cell enlargement during potato tuber formation. J. Exp. Bot. 49: 573-582.10.1093/jxb/49.320.573Search in Google Scholar
Zafar S.A., Shokat S., Ahmed H.G.M., Khan A., Ali M.Z. & Atif R.M. 2015. Assessment of salinity tolerance in rice using seedling based morpho-physiological indices. Adv. Life Sci. 2 (4): 142-149.Search in Google Scholar
Zheng X., Wu S., Zhai H., Zhou P., Song M., Su L., Xi Y., Li Z., Cai Y. & Meng F. 2013. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. Plant Cell Online. 25: 115-133.10.1105/tpc.112.107086Search in Google Scholar PubMed PubMed Central
Zheng Z.L., Yang Z., Jang J.C. & Metzger J.D. 2001. Modification of plant architecture in Chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J. Amer. Soc. Hortic. Sci. 126: 19-26.10.21273/JASHS.126.1.19Search in Google Scholar
Zhiponova M.K.,Morohashi K., Vanhoutte I., Machemer-Noonan K., Revalska M., Van Montagu M., Grotewold E. & Russinova E. 2014. Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop. Proc. Natl. Acad. Sci. USA 111: 2824-2829. Phytochrome: a key regulator of plant development 128310.1073/pnas.1400203111Search in Google Scholar PubMed PubMed Central
Zhu Y., Tepperman J.M., Fairchild C.D. & Quail P.H. 2000. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc. Natl. Acad.Sci. USA 97: 13419-13424 10.1073/pnas.230433797Search in Google Scholar PubMed PubMed Central
© 2016
Articles in the same Issue
- An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
- A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus
- Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
- Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
- Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia
- Species delimitation and population structure in three Onosma (Boraginaceae) species
- Glycinebetaine priming improves salt tolerance of wheat
- The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression
- High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures
- Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification
- Response of green hydra (Hydra viridissima) to variability and directional changes in food availability
- Data on some members of the family Tylenchidae (Nematoda: Tylenchina) from Iran
- New and firstly recorded oribatid mites from Turkey
- Reproductive parameters of four species of water mites (Acari: Hydrachnidia)
- A new species of the genus Aeolothrips (Thysanoptera: Aeolothripidae) from Iran
- Skull variability of mice and voles inhabiting the territory of a great cormorant colony
- High glucose-associated osmolality promotes adipocytogenic differentiation of primary rat osteoblasts in a protein kinase A and phosphatidylinositol 3-kinase/Akt-dependent manner
- Direct influence of rooibos-derived compound on rabbit ovarian functions and their response to gonadotropins
- Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea
Articles in the same Issue
- An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
- A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus
- Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
- Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
- Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia
- Species delimitation and population structure in three Onosma (Boraginaceae) species
- Glycinebetaine priming improves salt tolerance of wheat
- The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression
- High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures
- Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification
- Response of green hydra (Hydra viridissima) to variability and directional changes in food availability
- Data on some members of the family Tylenchidae (Nematoda: Tylenchina) from Iran
- New and firstly recorded oribatid mites from Turkey
- Reproductive parameters of four species of water mites (Acari: Hydrachnidia)
- A new species of the genus Aeolothrips (Thysanoptera: Aeolothripidae) from Iran
- Skull variability of mice and voles inhabiting the territory of a great cormorant colony
- High glucose-associated osmolality promotes adipocytogenic differentiation of primary rat osteoblasts in a protein kinase A and phosphatidylinositol 3-kinase/Akt-dependent manner
- Direct influence of rooibos-derived compound on rabbit ovarian functions and their response to gonadotropins
- Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea