Startseite Skull variability of mice and voles inhabiting the territory of a great cormorant colony
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Skull variability of mice and voles inhabiting the territory of a great cormorant colony

  • Laima Balčiauskienė EMAIL logo , Linas Balčiauskas und Marius Jasiulionis
Veröffentlicht/Copyright: 8. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 70 Heft 10

Abstract

We investigated the influence of a colony of great cormorants on the skull morphometry of yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) of three age groups trapped in the territory of the colony in 2011- 2014. In general, most of the skull differences in both species were related to character length (skulls tended to become longer). In A. flavicollis, the skull size differences between zones were most expressed in subadult and adult individuals, while in M. glareolus they were most expressed in juveniles, with only a few characters different in adults and none in subadult voles. For both species, the largest skull characters were found mostly in the zone characterized by both the greatest number of cormorant nests and the longest and strongest influence by the colony. Concluding we confirm that the great cormorant colony has an influence on the skull morphometry of A. flavicollis and M. glareolus and we hypothesize that these differences enhance the ability of survival in specific conditions.

References

Abt. K. & Bock W.F. 1998. Seasonal variations of diet composition in farmland field mice Apodemus spp. and bank voles Clethrionomys glareolus. Acta Theriol. 43 (4): 379-389. DOI: 10.4098/AT.arch.98-4910.4098/AT.arch.98-49Suche in Google Scholar

Adamonytė G., Iršėnaitė R., Motiejūunaitė J., Taraškevičius R. & Matulevičiūutė D. 2013. Myxomycetes in a forest affected by great cormorant colony: a case study in Western Lithuania. Fungal Diversity 59 (1): 131-146. DOI: 10.1007/s13225-012-0203-810.1007/s13225-012-0203-8Suche in Google Scholar

Badyaev A.V., Foresman K.R. & Fernandes M.V. 2000. Stress and developmental stability: vegetation removal causes increased fluctuating asymmetry in shrews. Ecology 81 (2): 336-345. DOI: 10.1890/0012-9658(2000)081[0336:SADSVR]2.0.CO;2Suche in Google Scholar

Balčiauskas L. 2004. Sausumos ekosistem˛u tyrimo metodai I dalis.Suche in Google Scholar

Gyvūun˛u apskaitos [Methods of investigation of terrestrial ecosystems. Part I. Animal surveys]. VUL, Vilnius, 183 pp. ISBN: 9986196701Suche in Google Scholar

Balčiauskas L. & Balčiauskienė L. 2011. Estimation of Root Vole body mass using bone measurements from prey remains. North-West J. Zool. 7 (1): 143-147.Suche in Google Scholar

Balčiauskas L., Balčiauskienė L. & Janonytė A. 2012. Reproduction of the root vole (Microtus oeconomus) at the edge of its distribution range. Turk. J. Zool. 36 (5): 668-675. DOI: 10.3906/zoo-1111-2010.3906/zoo-1111-20Suche in Google Scholar

Balčiauskas L., Balčiauskienė L. & Jasiulionis M. 2015. Mammals under a colony of great cormorants: population structure and body condition of yellow-necked mice. Turk. J. Zool. 39: 941-948. DOI: 10.3906/zoo-1407-2710.3906/zoo-1407-27Suche in Google Scholar

Balčiauskienė L., Jasiulionis M. & Balčiauskas L. 2014. Loss of diversity in a small mammal community in a habitat influenced by a colony of great cormorants. Acta Zool. Bulg. 66 (2): 229-234.Suche in Google Scholar

Bergstedt B. 1965. Distribution, reproduction, growth and dynamics of the rodent species Clethrionomys glareolus (Schreber), Apodemus flavicollis (Melchior) and Apodemus sylvaticus (Line) in southern Sweden. Oikos 16 (1/2): 132-160. DOI: 10.2307/356487110.2307/3564871Suche in Google Scholar

Dayan T. & Simberloff D. 2005. Ecological and community-wide character displacement: the next generation. Ecol. Lett. 8 (8): 875-894. DOI: 10.1111/j.1461-0248.2005.00791.x Fritsch C., Coeurdassier M., Giraudoux P., Raoul F., Douay F., Rieffel D., de Vaufleury A. & Scheifler R. 2011. Spatially explicit analysis of metal transfer to biota: Influence of soil contamination and landscape. PLoS ONE 6 (5): e20682. DOI: 10.1371/journal.pone.002068210.1371/journal.pone.0020682Suche in Google Scholar PubMed PubMed Central

Fritsch C., Cosson R.P., Coeurdassier M., Raoul F., Giraudoux P., Crini N., Vaufleury A. & Scheifler R. 2010. Responses of wild small mammals to a pollution gradient: Host factors influence metal and metallothionein levels. Envir. Pollut. 158 (3): 827-840. DOI: 10.1016/j.envpol.2009.09.02710.1016/j.envpol.2009.09.027Suche in Google Scholar PubMed

Gliwicz J. & Taylor J.R.E. 2002. Comparing life histories of shrews and rodents. Acta Theriol. 47 (Suppl. 1): 185-208. DOI: 10.1007/BF0319248710.1007/BF03192487Suche in Google Scholar

Grüm L. & Bujalska G. 2000. Bank voles and yellow-necked mice: what are interrelations between them? Pol. J. Ecol. 48 (Suppl.): 141-145.Suche in Google Scholar

Hendry A.P., Farrugia T.J. & Kinnison M.T. 2008. Human influences on rates of phenotypic change in wild animal populations.10.1111/j.1365-294X.2007.03428.xSuche in Google Scholar PubMed

Mol. Ecol. 17 (1): 20-29. DOI: 10.1111/j.1365-294X.2007.03428.x Heroldova M. 1994. Diet of four rodent species from Robinia pseudo-acacia stands in South Moravia. Acta Theriol. 39 (3): 333-337.10.4098/AT.arch.94-38Suche in Google Scholar

Hopton M.E., Cameron G.N., Cramer M.J., Polak M. & Uetz G.W. 2009. Live animal radiography to measure developmental instability in populations of small mammals after a natural disaster. Ecol. Indic. 9 (5): 883-891. DOI: 10.1016/j.ecolind.2008.10.01010.1016/j.ecolind.2008.10.010Suche in Google Scholar

Jakimska A., Konieczka P., Skora K. & Namiesnik J. 2011. Bioaccumulation of metals in tissues of marine animals, part II: metal concentrations in animal tissues. Pol. J. Environ. Stud. 20 (5): 1127-1146.Suche in Google Scholar

Johnson M.S., Leah R.T., Connor L., Rae C. & Saunders S.1996.Suche in Google Scholar

Polychlorinated biphenyls in small mammals from contaminated landfill sites. Envir. Pollut. 92 (2): 185-191. DOI: 10.1016/0269-7491(95)00096-810.1016/0269-7491(95)00096-8Suche in Google Scholar

Klimaszyk P. & Joniak T. 2011. Impact of black cormorant (Phalacrocorax carbo sinensis L.) on the transport of dissolved organic carbon from the catchment area to the lakes. Pol. J. Soil Sci. 42 (2): 161-166.Suche in Google Scholar

Klimaszyk P., Brzeg A., Rzymski P. & Piotrowicz R. 2015. Black spots for aquatic and terrestrial ecosystems: impact of a perennial cormorant colony on the environment. Sci. Total Environ. 517: 222-231. DOI: 10.1016/j.scitotenv.2015.02.06710.1016/j.scitotenv.2015.02.067Suche in Google Scholar PubMed

Kutorga E., Iršėnaitė R., Iznova T., Kasparavičius J., Markovskaja S. & Motiejūunaitė J. 2013. Species diversity and composition of fungal communities in a Scots pine forest affected by the great cormorant colony. Acta Mycologica 48 (2): 173-188. DOI: 10.5586/am.2013.01910.5586/am.2013.019Suche in Google Scholar

Martiniakova M., Omelka R., Grosskopf B. & Jančova A. 2010a.Suche in Google Scholar

Yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) as zoomonitors of environmental contamination at a polluted area in Slovakia. Acta Vet. Scand. 52: 58. DOI: 10.1186/1751-0147-52-5810.1186/1751-0147-52-58Suche in Google Scholar PubMed PubMed Central

Martiniakova M., Omelka R., Jancova A., Stawarz R. & Formicki G. 2010b. Heavy metal content in the femora of yellow-necked mouse (Apodemus flavicollis) and wood mouse (Apodemus sylvaticus) from different types of polluted environment in Slovakia. Environ. Monit. Assess. 171 (1): 651-660. DOI: 10.1007/s10661-010-1310-110.1007/s10661-010-1310-1Suche in Google Scholar PubMed

Mooney M.P., Siegel M.I. & Gest T.R. 1985. Prenatal stress and increased fluctuating asymmetry in the parietal bones of neonatal rats. Am. J. Phys. Anthropol. 68 (1): 131-134. DOI: 10.1002/ajpa.133068011210.1002/ajpa.1330680112Suche in Google Scholar PubMed

Motiejūunaitė J. 2014. Kormoran˛u poveikis gamtai [Impact of cormorants on nature]. Žurnalas „Miškai“ [Journal Forests] 10: 24-26.Suche in Google Scholar

Motiejūunaitė J., Iršėnaitė R., Adamonytė G., Dagys M., Taraškevičius R., Matulevičiūutė D. & Koreivienė J. 2014. Pine forest lichens under eutrophication generated by a great cormorant colony. Lichenologist 46 (2): 213-228. DOI: 10.1017/S002428 2913000820Suche in Google Scholar

Nunes A.C., Auffray J.C. & Mathias M.L. 2001. Developmental instability in a riparian population of the Algerian mouse (Mus spretus) associated with a heavy metal-polluted area in Central Portugal. Arch. Environ. Contam. Toxicol. 41 (4): 515-521. DOI: 10.1007/s00244001027910.1007/s002440010279Suche in Google Scholar PubMed

Oleksyk T.K., Novak J.M., Purdue J.R., Gashchak S.P. & Smith M.H. 2004. High levels of fluctuating asymmetry in populations of Apodemus flavicollis from the most contaminated areas in Chornobyl. J. Environ. Radioact. 73 (1): 1-20. DOI: 10.1016/j.jenvrad.2003.07.00110.1016/j.jenvrad.2003.07.001Suche in Google Scholar PubMed

Osono T. 2012. Excess supply of nutrients, fungal community, and plant litter decomposition: a case study of avian-derived excreta deposition in conifer plantations, Chapter 10. pp. 173-196. DOI: 10.5772/26491 In: Young S.S. & Silvern S.E. (eds), Environmental Change / International Perspectives on Global Environmental Change, InTech, Rijeka, Croatia, 488 pp. ISBN: 978-953-307-815-1Suche in Google Scholar

Pergams O.R.W. & Lawler J.J. 2009. Recent and widespread tapid morphological change in rodents. PLoS ONE 4 (7): e6452. DOI: 10.1371/journal.pone.000645210.1371/journal.pone.0006452Suche in Google Scholar PubMed PubMed Central

Petkovšek S.A.S., Kopušar N. & Kryštufek B. 2014. Small mammals as biomonitors of metal pollution: a case study in Slovenia. Environ. Monit. Assess. 186 (7): 4261-4274. DOI: 10.1007/s10661-014-3696-710.1007/s10661-014-3696-7Suche in Google Scholar PubMed

Rautio A., Kunnasranta M., Valtonen A., Ikonen M., Hyv¨arinen H., Holopainen I.J. & Kukkonen J.V.K. 2010. Sex, age, and tissue specific accumulation of eight metals, arsenic, and and selenium in the European hedgehog (Erinaceus auropaeus). Arch. Environ. Contam. Toxicol. 59 (4): 642-651. DOI: 10.1007/s00244-010-9503-810.1007/s00244-010-9503-8Suche in Google Scholar PubMed

Renaud S., Michaux J., Schmidt D.N., Aguilar J.P., Mein P. & Auffray J.C. 2005. Morphological evolution, ecological diversification and climate change in rodents. Proc. R. Soc. B. Biol. Sci. 272 (1563): 609-617. DOI: 10.1098/rspb.2004.299210.1098/rspb.2004.2992Suche in Google Scholar PubMed PubMed Central

Schlanbusch P., Jensen T.S., Demontis D., Loeschcke V. & Pertoldi C. 2011. A craniometric investigation of the field vole Microtus agrestis in Denmark - population substructure. Hystrix 22 (2): 227-255. DOI: 10.4404/Hystrix-22.2-4475Suche in Google Scholar

StatSoft, Inc. 2004. STATISTICA (data analysis software system), version 6. http://www.statsoft.com/textbook (accessed 15.01.2015).Suche in Google Scholar

Talmage S.S. &Walton B.T. 1991. Small mammals as monitors of environmental contaminants. Rev. Environ. Contam. Toxicol. 119: 47-145. DOI: 10.1007/978-1-4612-3078-6 210.1007/978-1-4612-3078-6Suche in Google Scholar

Tête N., Fritsch C., Afonso E., Coeurdassier M., Lambert J.C., Giraudoux P. & Scheifler R. 2013. Can body condition and somatic indices be used to evaluate metal-induced stress in wild small mammals? PLoS ONE 8 (6): e66399. DOI: 10.1371/journal.pone.0066399 van den Brink N., Lammertsma D., Dimmers W., Boerwinkel M.C. & van der Hout A. 2010. Effects of soil properties on food web accumulation of heavy metals to the wood mouse (Apodemus sylvaticus). Environ. Pollut. 158 (1): 245-251. DOI: 10.1016/j.envpol.2009.07.01310.1016/j.envpol.2009.07.013Suche in Google Scholar PubMed

Veličkovi´c M. 2004. Chromosomal aberrancy and the level of fluctuating asymmetry in black-striped mouse (Apodemus agrarius ): effects of disturbed environment. Hereditas 140 (2): 112-122. DOI: 10.1111/j.1601-5223.2004.01827.x Velickovic M. 2007. Measures of the developmental stability, body size and body condition in the black-striped mouse (Apodemus agrarius) as indicators of a disturbed environment in northern Serbia. Belg. J. Zool. 137 (2): 147-156.10.1111/j.1601-5223.2004.01827.xSuche in Google Scholar PubMed

Yom-Tov Y., Yom-Tov S. & Baagoe H. 2003. Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the twentieth century: an effect of improved diet? Evol. Ecol. Res. 5: 1037-1048.Suche in Google Scholar

Źółkóś K., Kukwa M. & Afranowicz-Cieślak R. 2013. Changes in the epiphytic lichen biota in the Scots pine (Pinus sylvestris) stands affected by a colony of grey heron (Ardea cinerea): a case study from northern Poland. Lichenologist 45 (6): 815-823. DOI: 10.1017/S002428291300055810.1017/S0024282913000558Suche in Google Scholar

Received: 2015-3-17
Accepted: 2015-9-17
Published Online: 2016-1-8
Published in Print: 2015-10-1

© 2016

Artikel in diesem Heft

  1. An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
  2. A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus
  3. Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
  4. Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
  5. Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia
  6. Species delimitation and population structure in three Onosma (Boraginaceae) species
  7. Glycinebetaine priming improves salt tolerance of wheat
  8. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression
  9. High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures
  10. Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification
  11. Response of green hydra (Hydra viridissima) to variability and directional changes in food availability
  12. Data on some members of the family Tylenchidae (Nematoda: Tylenchina) from Iran
  13. New and firstly recorded oribatid mites from Turkey
  14. Reproductive parameters of four species of water mites (Acari: Hydrachnidia)
  15. A new species of the genus Aeolothrips (Thysanoptera: Aeolothripidae) from Iran
  16. Skull variability of mice and voles inhabiting the territory of a great cormorant colony
  17. High glucose-associated osmolality promotes adipocytogenic differentiation of primary rat osteoblasts in a protein kinase A and phosphatidylinositol 3-kinase/Akt-dependent manner
  18. Direct influence of rooibos-derived compound on rabbit ovarian functions and their response to gonadotropins
  19. Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea
Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2015-0152/html
Button zum nach oben scrollen