Startseite Fabrication of 3D microstructures using grayscale lithography
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fabrication of 3D microstructures using grayscale lithography

  • Frederico Lima , Isman Khazi ORCID logo EMAIL logo , Ulrich Mescheder , Alok C. Tungal und Uma Muthiah
Veröffentlicht/Copyright: 12. Juni 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Following the demand for three-dimensional (3D) micromachined structures, additive and subtractive processes were developed for fabrication of real 3D shapes in metals, alloys and monocrystalline Si (c-Si). As a primary structuring step for well-defined 3D structuring of the photoresist, grayscale lithography by laser direct writing was used. For additive fabrication of 3D microstructures, structured photoresist was used as molds. They were sputtered and subsequently electroplated by a metal (Cu) and an alloy (NiCo). The derived electroplated structures were demolded from the photoresist using an organic stripper. These metal structures are satisfactory replicas of the photoresist pattern. For subtractive pattern transfer of 3D structures into c-Si, reactive ion etching (RIE) was used to transfer the 3D photoresist structure into c-Si with 1:1 pattern transferability. The process parameters of RIE were optimized to obtain a selectivity of 1 and an anisotropy factor close to 1. Whereas conventional X-ray lithography (LIGA) and nanoimprint lithography result in 2.5D patterns, these techniques allow the fabrication of almost any arbitrary 3D shapes with high accuracy. In many cases, 3D structures (‘free forms’) are required, e.g. for molding of optical components such as spheres (or aspheres), channels for lab-on-a-chip and pillars for biological applications. Moreover, 3D structures on Si could be used as optical gratings and sensors.

Acknowledgments

We would like to thank Mr. Alexander Filbert for the technical support with the grayscale lithography using DWL 66FS and the DFG for the grant for the DWL 66FS (under INST 897/4-1 FUGG).

References

[1] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner and D. Münchmeyer, Microelectron. Eng. 4, 35–56 (1986).10.1016/0167-9317(86)90004-3Suche in Google Scholar

[2] R. Bischofberger, H. Zimmermann and G. Staufert, Sens. Actuators A Phys. 61, 392–399 (1997).10.1016/S0924-4247(97)80295-6Suche in Google Scholar

[3] H. Schift, Appl. Phys. A 121, 415–435 (2015).10.1007/s00339-015-9106-3Suche in Google Scholar

[4] Y. Lu and S. Chen, Appl. Phys. Lett. 92, 41109 (2008).10.1063/1.2838751Suche in Google Scholar

[5] Z. D. Popovic, R. A. Sprague and G. A. Connell, Appl. Opt. 27, 1281–1284 (1988).10.1364/AO.27.001281Suche in Google Scholar PubMed

[6] T. Bourouina, T. Masuzawa and H. Fujita, J. Microelectromech. Syst. 13, 190–199 (2004).10.1109/JMEMS.2003.823219Suche in Google Scholar

[7] Z. Peng, D. Fattal, A. Faraon, M. Fiorentino, J. Li, et al., Opt. Lett. 36, 1515–1517 (2011).10.1364/OL.36.001515Suche in Google Scholar PubMed

[8] J. P. Marsh, D. J. Mar and D. T. Jaffe, in ‘Ground-based and Airborne Instrumentation for Astronomy’, Eds. By I. S. McLean, M. Iye, vol. 6269, (Proc. SPIE, 2006) p. 62694J.Suche in Google Scholar

[9] G. Yoo, H. Lee, D. Radtke, M. Stumpf, U. Zeitner, et al., Microelectron. Eng. 87, 83–87 (2010).10.1016/j.mee.2009.05.032Suche in Google Scholar

[10] S. Jeon, V. Malyarchuk, J. O. White and J. A. Rogers, Nano Lett. 5, 1351–1356 (2005).10.1021/nl050606rSuche in Google Scholar PubMed

[11] D. Therriault, S. R. White and J. A. Lewis, Nat. Mater. 2, 265–271 (2003).10.1038/nmat863Suche in Google Scholar PubMed

[12] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, et al., Science (New York, NY) 325, 1513–1515 (2009).10.1126/science.1177031Suche in Google Scholar PubMed

[13] C. Stilson, R. Pal and R. A. Coutu, in M. A. Maher, P. J. Resnick (Eds.), Micromachining and microfabrication process technology XIX, SPIE, 2014, 89730E.10.1117/12.2037361Suche in Google Scholar

[14] A. Schaap and Y. Bellouard, Opt. Mater. Express 3, 1428 (2013).10.1364/OME.3.001428Suche in Google Scholar

[15] S. Diez, in ‘Emerging digital micromirror device based systems and applications VIII’ Eds. by M. R. Douglass, P. S. King, B. L. Lee (SPIE, 2016) p. 976102.Suche in Google Scholar

[16] Y.-H. Hung, H.-L. Chien and Y.-C. Lee, Appl. Sci. 8, 1690 (2018).10.3390/app8091690Suche in Google Scholar

[17] C.-C. Chiu and Y.-C. Lee, Int. J. Mach. Tool. Manu. 70, 15–21 (2013).10.1016/j.ijmachtools.2013.03.002Suche in Google Scholar

[18] J. K. Tseng, Y. J. Chen, C. T. Pan, T. T. Wu and M. H. Chung, Solar Energy 85, 2167–2178 (2011).10.1016/j.solener.2011.06.004Suche in Google Scholar

[19] Heidelberg Instruments Mikrotechnik GmbH, Device Specification, The DWL 66FS laser lithography system, Heidelberg, Germany (2008).Suche in Google Scholar

[20] U. M. Isman Khazi, Self-aligning micro punch-die tool-system for high precision blanking of thin metal foils (Mikrosystemtechnik Kongress, Karlsruhe, 2015).Suche in Google Scholar

[21] I. Khazi, U. Muthiah and U. Mescheder, Microelectron. Eng. 193, 34–40 (2018).10.1016/j.mee.2018.02.006Suche in Google Scholar

[22] E. Kieselstein, J.-P. Sommer, K. Brämer, V. Großer, W. Benecke, et al., Microsyst. Technol. 7, 196–202 (2001).10.1007/s005420000086Suche in Google Scholar

[23] S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, et al., Microelectron. Eng. 83, 1087–1090 (2006).10.1016/j.mee.2006.01.150Suche in Google Scholar

[24] S. Audran, B. Mortini, B. Faure and G. Schlatter, J. Micromech. Microeng. 20, 95008 (2010).10.1088/0960-1317/20/9/095008Suche in Google Scholar

[25] F. T. O’Neill and J. T. Sheridan, Optik 113, 391–404 (2002).10.1078/0030-4026-00186Suche in Google Scholar

[26] S. B. Matthias Heschel, Sens. Actuators A 70, 75–80 (1998).10.1016/S0924-4247(98)00104-6Suche in Google Scholar

[27] R. Allen, J. Electrochem. Soc. 129, 1379 (1982).10.1149/1.2124168Suche in Google Scholar

[28] R. Kirchner, A. Schleunitz and H. Schift, J. Micromech. Microeng. 24, 55010 (2014).10.1088/0960-1317/24/5/055010Suche in Google Scholar

[29] R. Kirchner and H. Schift, Mater. Sci. Semicond. Process. 92 58–72 (2019).10.1016/j.mssp.2018.07.032Suche in Google Scholar

Received: 2019-02-27
Accepted: 2019-04-01
Published Online: 2019-06-12
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2019-0023/pdf
Button zum nach oben scrollen