Home Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
Article
Licensed
Unlicensed Requires Authentication

Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing

  • Hefei Zhou , Xiaoyang Zhu EMAIL logo , Hongke Li and Hongbo Lan EMAIL logo
Published/Copyright: May 31, 2019
Become an author with De Gruyter Brill

Abstract

In order to realize the mass production of the large-area flexible transparent film heater (FTFH) at low-cost, this paper presents a novel method which can achieve the direct fabrication of the large-area FTFH with Ag-grid by using an electric-field-driven jet deposition micro-scale 3D printing. The effects of the line width and the pitch of the printed Ag-grids on the optical transmittance and the sheet resistance are revealed. A typical FTFH with area of 80 mm × 60 mm, optical transmittance of 91.5% and sheet resistance of 4.7 Ω sq−1 is fabricated by the nano-silver paste with a high silver content (80 wt.%) and high viscosity (up to 20 000 mPa · s). Temperature-time response profiles and heating temperature distribution show that the heating performance of the FTFH has good thermal and mechanical properties. Furthermore, the adhesive force grade between the Ag-grid and the PET substrate measured to be 4B by 3M scotch tape. Therefore, the FTFH fabricated here is expected to be widely used in industry, such as window defroster of vehicles and display or touch screens owing to its striking characteristics of large area and low cost fabrication.

Award Identifier / Grant number: 51775288

Award Identifier / Grant number: 51705271

Funding statement: This project was supported by National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, Grant No. 51775288, 51705271) and the Key research and development plan of Shandong Province (Grant No. 2018GGX103022).

References

[1] Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, et al. Adv. Mat. 19, 4284–4287 (2007).10.1002/adma.200701173Search in Google Scholar

[2] R. Gupta, K. D. M. Rao, S. Kiruthika, G. U. Kulkarni, ACS Appl. Mater. Int. 8, 12559–12575 (2016).10.1021/acsami.5b11026Search in Google Scholar PubMed

[3] T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J. P. Simonato, et al. Small 12, 6052–6075 (2016).10.1002/smll.201602581Search in Google Scholar PubMed

[4] J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, et al. Adv. Func. Mater. 22, 4819–4826 (2012).10.1002/adfm.201201155Search in Google Scholar

[5] H. Kim, H. Lee, I. Ha, J. Jung, P. Won, et al. Adv. Func. Mater. 28, 1801847 (2018).10.1002/adfm.201801847Search in Google Scholar

[6] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, et al. Nat. Nanotech. 6, 296–301 (2011).10.1038/nnano.2011.36Search in Google Scholar PubMed

[7] S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, et al. Adv. Mater. 27, 4744–4751 (2015).10.1002/adma.201500917Search in Google Scholar PubMed

[8] S. Soltanian, R. Rahmanian, B. Gholamkhass, N. M. Kiasari, F. Ko, et al. Advan. Ener. Mater. 3, 1332–1337 (2013).10.1002/aenm.201300193Search in Google Scholar

[9] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, et al. Science. 305, 1273–1276 (2004).10.1126/science.1101243Search in Google Scholar PubMed

[10] M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, et al. Science 309, 1215–1219 (2005).10.1126/science.1115311Search in Google Scholar PubMed

[11] D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23, 1482–1513 (2011).10.1002/adma.201003188Search in Google Scholar PubMed

[12] L. R. Shobin, S. Manivannan, Sol. Ener. Mater. Sol. Cells 174, 469–477 (2018).10.1016/j.solmat.2017.09.041Search in Google Scholar

[13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, et al. Nature 457, 706–710 (2009).10.1038/nature07719Search in Google Scholar PubMed

[14] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, et al. Nat. Nanotech. 3, 538–542 (2008).10.1038/nnano.2008.210Search in Google Scholar PubMed

[15] H. Sun, D. Chen, C. Ye, X. Li, D. Dai, et al. Appl. Sur. Sci. 435, 809–814 (2018).10.1016/j.apsusc.2017.11.182Search in Google Scholar

[16] M. Vosgueritchian, D. J. Lipomi, Z. Bao, Adv. Func. Mater. 22, 421–428 (2012).10.1002/adfm.201101775Search in Google Scholar

[17] M. N. Gueye, A. Carella, R. Demadrille, J.-P. Simonato, ACS App. Mater. Inter. 9, 27250–27256 (2017).10.1021/acsami.7b08578Search in Google Scholar PubMed

[18] C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, et al. Nano Res. 5, 427–433 (2012).10.1007/s12274-012-0225-2Search in Google Scholar

[19] S. An, H. S. Jo, D. Y. Kim, H. J. Lee, B. K. Ju, et al. Adv. Mater. 28, 7149–7154 (2016).10.1002/adma.201506364Search in Google Scholar PubMed

[20] C. H. Lee, Y. J. Yun, H. Cho, K. S. Lee, M. Park, et al. J. Mater. Chem. C 6, 7847–7854 (2018).10.1039/C8TC02412JSearch in Google Scholar

[21] J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, et al. Adv. Func. Mater. 26, 833–840 (2016).10.1002/adfm.201503705Search in Google Scholar

[22] D. Lordan, M. Burke, M. Manning, A. Martin, A. Amann, et al. ACS Appl. Mater. Inter. 9, 4932–4940 (2017).10.1021/acsami.6b12995Search in Google Scholar PubMed

[23] P. Lu, F. Cheng, Y. Ou, M. Lin, L. Su, et al. Comp. Sci. Tech. 153, 1–6 (2017).10.1016/j.compscitech.2017.09.033Search in Google Scholar

[24] J. Kang, Y. Jang, Y. Kim, S. Cho, J. Suhr, et al. Nanoscale 7, 6567–6573 (2015).10.1039/C4NR06984FSearch in Google Scholar PubMed

[25] S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, Adv. Mater. 26, 6670–6687 (2014).10.1002/adma.201402710Search in Google Scholar PubMed

[26] J. A. Spechler, T. W. Koh, J. T. Herb, B. P. Rand, C. B. Arnold, et al. Advan. Funct. Mater. 25, 7428–7434 (2015).10.1002/adfm.201503342Search in Google Scholar

[27] C. F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, et al. Nat. Commun. 5, 3121 (2014).10.1038/ncomms4121Search in Google Scholar PubMed

[28] T. Iwahashi, R. Yang, N. Okabe, J. Sakurai, J. Lin, et al. Appl. Phys. Let. 105, 223901 (2014).10.1063/1.4903061Search in Google Scholar

[29] I. Burgués-Ceballos, N. Kehagias, C. M. Sotomayor-Torres, M. Campoy-Quiles, P. D. Lacharmoise, Sol. Energy Mater. Sol. Cells 127, 50–57 (2014).10.1016/j.solmat.2014.03.024Search in Google Scholar

[30] R. Eckstein, G. Hernandez-Sosa, U. Lemmer, N. Mechau, Org. Elect. 15, 2135–2140 (2014).10.1016/j.orgel.2014.05.031Search in Google Scholar

[31] Y. Jang, J. Kim, D. Byun, J. Phys. D: Appl. Phys. 46, 155103 (2013).10.1088/0022-3727/46/15/155103Search in Google Scholar

Received: 2019-02-14
Accepted: 2019-04-23
Published Online: 2019-05-31
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2019-0021/html
Scroll to top button