Home 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
Article
Licensed
Unlicensed Requires Authentication

3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology

  • Noriyuki Unno EMAIL logo and Jun Taniguchi
Published/Copyright: May 30, 2019
Become an author with De Gruyter Brill

Abstract

Nanostructures have unique characteristics, such as large specific surface areas, that provide a wide range of engineering applications, such as electronics, optics, biotics, and thermal and fluid dynamics. They can be used to downsize many engineering products; therefore, new nanofabrication techniques are strongly needed to meet this demand. A simple fabrication process with high throughput is necessary for low-cost nanostructures. In recent years, three-dimensional (3D) nanostructures have attracted much attention because they dramatically opened up new fields for applications. However, conventional techniques for fabricating 3D nanostructures contain many complex processes, such as multiple patterning lithography, metal deposition, lift-off, etching, and chemical-mechanical polishing. This paper focuses on controlled-acceleration-voltage electron beam lithography (CAV-EBL), which can fabricate 3D nanostructures in one shot. The applications of 3D nanostructures are introduced, and the conventional 3D patterning technique is compared with CAV-EBL and various 3D patterning techniques using CAV-EBL with nanoimprinting technology. Finally, the outlook for next-generation devices that can be fabricated by CAV-EBL is presented.

References

[1] International Roadmap for Devices and Systems, 2017 Edition, Lithography.Search in Google Scholar

[2] C. K. Hu and J. M. E. Harper, Mater. Chem. Phys. 52, 5 (1998).10.1016/S0254-0584(98)80000-XSearch in Google Scholar

[3] N. Samoto, Y. Makino, K. Onda, E. Mizuki and T. Itoh, J. Vac. Sci. Technol. B 8, 1335 (1990).10.1116/1.584914Search in Google Scholar

[4] E. Y. Chang, K. C. Lin, E. H. Liu, C. Y. Chang, T. H. Chen, et al., IEEE Electr. Device Lett. 15, 277 (1994).10.1109/55.296215Search in Google Scholar

[5] A. S. Wakita, C.-Y. Su, H. Rohdin, H.-Y. Liu, A. Lee, et al., J. Vac. Sci. Technol. B 13, 2725 (1995).10.1116/1.588253Search in Google Scholar

[6] Y. Chen, D. Macintyre and S. Thoms, J. Vac. Sci. Technol. B 17, 2507 (1999).10.1116/1.591119Search in Google Scholar

[7] Y. Anda, T. Matsuno, M. Tanabe, T. Uda, M. Yanagihara, et al., J. Vac. Sci. Technol. B 17, 320 (1999).10.1116/1.590558Search in Google Scholar

[8] A. Endoh, Y. Yamashita, K. Shinohara, M. Higashiwaki, K. Hikosaka, et al., Jpn. J. Appl. Phys. 41.2S, 1094 (2002).10.1143/JJAP.41.1094Search in Google Scholar

[9] Y. Chen, D. S. Macintyre, X. Cao, E. Boyd, D. Moran, et al., J. Vac. Sci. Technol. B 21, 3012 (2003).10.1116/1.1629292Search in Google Scholar

[10] Y. Chen, Microelectron. Eng. 135, 57 (2015).10.1016/j.mee.2015.02.042Search in Google Scholar

[11] P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).10.1038/244281a0Search in Google Scholar

[12] G. Tricoles, Appl. Opt. 26, 4351 (1987).10.1364/AO.26.004351Search in Google Scholar PubMed

[13] S. Noda, K. Tomoda, N. Yamamoto and A. Chutinan, Science 289, 604 (2000).10.1126/science.289.5479.604Search in Google Scholar PubMed

[14] A. Marmur, Langmuir 20, 3517 (2004).10.1021/la036369uSearch in Google Scholar PubMed

[15] Y. T. Cheng, D. E. Rodak, C. A. Wong and C. A. Hayden, Nanotechnology 17, 1359 (2006).10.1088/0957-4484/17/5/032Search in Google Scholar

[16] P. Kim, T.-S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, et al., ACS Nano 6, 6569 (2012).10.1021/nn302310qSearch in Google Scholar PubMed

[17] E. P. Ivanova, J. Hasan, H. K. Webb, V. K. Truong, G. S. Watson, et al., Small 8, 2489 (2012).10.1002/smll.201200528Search in Google Scholar PubMed

[18] C. M. Bhadra, V. K. Truong, V. T. Pham, M. Al Kobaisi, G. Seniutinas, et al., Sci. Rep. 5, 16817 (2015).10.1038/srep16817Search in Google Scholar PubMed PubMed Central

[19] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, et al., Langmuir 24, 4114 (2008).10.1021/la703821hSearch in Google Scholar PubMed

[20] Y. C. Tung, Analyst 136, 473 (2011).10.1039/C0AN00609BSearch in Google Scholar PubMed PubMed Central

[21] Y. W. Lu and S. G. Kandlikar, Heat Transfer Eng. 32, 827–842 (2011).10.1080/01457632.2011.548267Search in Google Scholar

[22] G. D. Bixler and B. Bhushan, Soft Matter 9, 1620–1635 (2013).10.1039/C2SM27070FSearch in Google Scholar

[23] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, et al., Nat. Mater. 3, 444 (2004).10.1038/nmat1155Search in Google Scholar

[24] B. Wagner, H. J. Quenzer, W. Henke, W. Hoppe and W. Pilz, Sens. Actuators A: Phys. 46, 89–94 (1995).10.1016/0924-4247(94)00868-ISearch in Google Scholar

[25] C. M. Waits, B. Morgan, M. Kastantin and R. Ghodss, Sens. Actuators A: Phys. 119, 245–253 (2005).10.1016/S0924-4247(04)00193-1Search in Google Scholar

[26] T. Hayashi, T. Shibata, T. Kawashima, E. Makino, T. Mineta, et al., Sens. Actuators A: Phys. 144, 381–388 (2008).10.1016/j.sna.2008.02.014Search in Google Scholar

[27] J. Fischer, G. von Freymann and M. Wegener, Adv. Mater. 22, 3578–3582 (2010).10.1002/adma.201000892Search in Google Scholar

[28] W. Chen and H. Ahmed, Appl. Phys. Lett. 62, 1499–1501 (1993).10.1063/1.109609Search in Google Scholar

[29] D. Winstona, B. M. Cord, B. Ming, D. C. Bell, W. F. DiNatale, et al., J. Vac. Sci. Technol. B 27, 2702–2706 (2009).10.1116/1.3250204Search in Google Scholar

[30] M. Kalus, M. Frey, L.-M. Buchmann, K. Reimer and B. Wagner, Microelectron. Eng. 41, 461–464 (1998).10.1016/S0167-9317(98)00107-5Search in Google Scholar

[31] G. Piaszenski, U. Barth, A. Rudzinski, A. Rampe, A. Fuchs, et al., Microelectron. Eng. 84, 945–948 (2007).10.1016/j.mee.2007.01.015Search in Google Scholar

[32] K. H. Müller, Phys. Rev. B 35, 7906 (1987).10.1103/PhysRevB.35.7906Search in Google Scholar

[33] H. W. P. Koops, R. Weiel, D. P. Kern and T. H. Baum, J. Vac. Sci. Technol. B 6, 477–481 (1988).10.1116/1.584045Search in Google Scholar

[34] Y. Hirai, S. Harada, H. Kikuta and Y. Tanaka, J. Vac. Sci. Technol. B 20, 2867–2871 (2002).10.1116/1.1515305Search in Google Scholar

[35] R. Murali, D. K. Brown, K. P. Martin and J. D. Meindl, J. Vac. Sci. Technol. B 24, 2936–2939 (2006).10.1116/1.2357962Search in Google Scholar

[36] J. Taniguchi, M. Iida, T. Miyazawa, I. Miyamoto and K. Shinoda, Appl. Surf. Sci. 238, 324–330 (2004).10.1016/j.apsusc.2004.05.220Search in Google Scholar

[37] N. Unno, J. Taniguchi and Y. Ishii, J. Vac. Sci. Technol. B 25, 2361–2364 (2007).10.1116/1.2811715Search in Google Scholar

[38] Y. Ishii and J. Taniguchi, Microelectron. Eng. 84, 912–915 (2007).10.1016/j.mee.2007.01.133Search in Google Scholar

[39] C. Feldman, Phys. Rev. 117, 455 (1960).10.1103/PhysRev.117.455Search in Google Scholar

[40] Y. Matsubara, J. Taniguchi and I. Miyamoto, Jpn. J. Appl. Phys. 45, 5538 (2006).10.1143/JJAP.45.5538Search in Google Scholar

[41] J. Taniguchi, K. Machinaga, N. Unno and N. Sakai, Microelectron. Eng. 86, 676–680 (2009).10.1016/j.mee.2008.12.085Search in Google Scholar

[42] K. Osari, N. Unno, J. Taniguchi, K.-i. Machinaga, T. Ohsaki, et al., Microelectron. Eng. 87, 918–921 (2010).10.1016/j.mee.2009.11.175Search in Google Scholar

[43] A. del Campo and G. Christian, J. Micromech. Microeng. 17, R81 (2007).10.1088/0960-1317/17/6/R01Search in Google Scholar

[44] V. Kudryashov, X. C. Yuan, W. C. Cheong and K. Radhakrishnan., Microelectron. Eng. 67, 306–311 (2003).10.1016/S0167-9317(03)00083-2Search in Google Scholar

[45] T. H. P. Chang, J. Vac. Sci. Technol. 12, 1271–1275 (1975).10.1116/1.568515Search in Google Scholar

[46] S. A. Rishton and D. P. Kern, J. Vac. Sci. Technol. B 5, 135–141 (1987).10.1116/1.583847Search in Google Scholar

[47] A. Olkhovets and H. G. Craighead, J. Vac. Sci. Technol. B 17, 1366–1370 (1999).10.1116/1.590762Search in Google Scholar

[48] K. Ogino, J. Taniguchi, S. Satake, K. Yamamoto, Y. Ishii, et al., Microelectron. Eng. 84, 1071–1074 (2007).10.1016/j.mee.2007.01.144Search in Google Scholar

[49] N. Unno, J. Taniguchi, M. Shizuno and K. Ishikawa, J. Vac. Sci. Technol. B 26, 2390–2393 (2008).10.1116/1.3010735Search in Google Scholar

[50] N. Unno, J. Taniguchi and K. Ishikawa, J. Vac. Sci. Technol. B 29, 06FC06 (2011).10.1116/1.3656052Search in Google Scholar

[51] M. Shizuno, J. Taniguchi, K. Ogino and K. Ishikawa, J. Nanosci. Nanotechnol. 9, 562–566 (2009).10.1166/jnn.2009.J040Search in Google Scholar PubMed

[52] H. Miyoshi and J. Taniguchi, Microelectron. Eng. 143, 48–54 (2015).10.1016/j.mee.2015.03.026Search in Google Scholar

[53] S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129–4133 (1996).10.1116/1.588605Search in Google Scholar

[54] J. Haisma, M. Verheijen, K. Van Den Heuvel and J. Van Den Berg, J. Vac. Sci. Technol. B 14, 4124–4128 (1996).10.1116/1.588604Search in Google Scholar

[55] N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, et al., J. Vac. Sci. Technol. B 24, 3002–3005 (2006).10.1116/1.2388962Search in Google Scholar

[56] N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, et al., Nanotechnology 18, 175303 (2007).10.1088/0957-4484/18/17/175303Search in Google Scholar

[57] S. Y. Yew, T. S. Kustandi, H. Y. Low, J. H. Teng, Y. J. Liu, et al., Microelectron. Eng. 88, 2946–2950 (2011).10.1016/j.mee.2011.04.028Search in Google Scholar

[58] H.-J. Choi, S. Choo, J.-H. Shin, K.-I. Kim and H. Lee, J. Phys. Chem. C 117, 24354–24359 (2013).10.1021/jp4070399Search in Google Scholar

[59] K.-S. Han, S.-H. Hong, K.-I. Kim, J.-Y. Cho, K.-w. Choi, et al., Nanotechnology 24, 045304 (2013).10.1088/0957-4484/24/4/045304Search in Google Scholar PubMed

[60] N. Kooy, K. Mohamed, L. T. Pin and O. S. Guan, Nanoscale Res. Lett. 9, 320 (2014).10.1186/1556-276X-9-320Search in Google Scholar PubMed PubMed Central

[61] J. Taniguchi and M. Aratani, J. Vac. Sci. Technol. B 27, 2841–2845 (2009).10.1116/1.3237141Search in Google Scholar

[62] J. Taniguchi, S. Tsuji and M. Aratani, J. Vac. Sci. Technol. B 28, C6M45–C6M49 (2010).10.1116/1.3511474Search in Google Scholar

[63] H. Maruyama, N. Unno and J. Taniguchi, Microelectron. Eng. 97, 113–116 (2012).10.1016/j.mee.2012.01.012Search in Google Scholar

[64] J. Taniguchi, N. Unno and H. Maruyama, J. Vac. Sci. Technol. B 29, 06FC08 (2011).10.1116/1.3657524Search in Google Scholar

[65] M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, et al., Nat. Mater. 5, 33 (2006).10.1038/nmat1532Search in Google Scholar

[66] J. Taniguchi, S. Ide, N. Unno and H. Sakaguchi, Microelectron. Eng. 86, 590–595 (2009).10.1016/j.mee.2008.11.053Search in Google Scholar

[67] J. Zaumseil, M. A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, et al., Nano Lett. 3, 1223–1227 (2003).10.1021/nl0344007Search in Google Scholar

[68] R. D. Nagel, T. Haeberle, M. Schmidt and G. Scarpa, Nanoscale Res. Lett. 11, 143 (2016).10.1186/s11671-016-1346-4Search in Google Scholar PubMed PubMed Central

[69] N. Unno and J. Taniguchi, J. Adv. Mech. Des. Syst. 4, 1022–1032 (2010).10.1299/jamdsm.4.1022Search in Google Scholar

[70] N. Unno, J. Taniguchi, S. Ide, S. Ishikawa, and Y. Ootsuka, et al., J. Phys. Conf. Ser. 191, 012014 (2009).10.1088/1742-6596/191/1/012014Search in Google Scholar

[71] R. Wakamatsu and J. Taniguchi, Microelectron. Eng. 123, 94–99 (2014).10.1016/j.mee.2014.05.021Search in Google Scholar

[72] N. Unno and J. Taniguchi, Microelectron. Eng. 87, 1019–1023 (2010).10.1016/j.mee.2009.11.102Search in Google Scholar

[73] N. Unno, S. Yoshida, H. Akamatsu, M. Yamamoto, S.-i. Satake, et al., J. Vac. Sci. Technol. B 31, 06FB01 (2013).10.1116/1.4821654Search in Google Scholar

[74] K. Ogino, N. Unno, S. Yoshida, M. Yamamoto and J. Taniguchi, Microelectron. Eng. 123, 163–166 (2014).10.1016/j.mee.2014.06.034Search in Google Scholar

[75] Y. Shinonaga, K. Ogino, N. Unno, S. Yoshida, M. Yamamoto, et al., Microelectron. Eng. 141, 102–106 (2015).10.1016/j.mee.2015.01.036Search in Google Scholar

[76] N. Unno, J. Taniguchi and S. Ide, J. Vac. Sci. Technol. B 28, C6M32–C6M36 (2010).10.1116/1.3501352Search in Google Scholar

[77] N. Unno and J. Taniguchi, Microelectron. Eng. 88, 2149–2153 (2011).10.1016/j.mee.2011.02.006Search in Google Scholar

[78] C. Zettner and M. Yoda, Exp. Fluids 34, 115–121 (2003).10.1007/s00348-002-0541-5Search in Google Scholar

[79] H. F. Li and M. Yoda, Meas. Sci. Technol. 19, 075402 (2008).10.1088/0957-0233/19/7/075402Search in Google Scholar

[80] S. Someya, D. Ochi, Y. Li, K. Tominaga, K. Ishii, et al., Appl. Phys. B 99, 325–332 (2010).10.1007/s00340-010-3926-9Search in Google Scholar

[81] N. Unno, A. Maeda, S. Satake, T. Tsuji and J. Taniguchi, Microelectron. Eng. 133, 98–103 (2015).10.1016/j.mee.2014.12.002Search in Google Scholar

[82] N. Unno, S. Nakata, S. Satake and J. Taniguchi, Exp. Fluids 57, 120 (2016).10.1007/s00348-016-2205-xSearch in Google Scholar

[83] S. Nakata, N. Unno, S. Satake and J. Taniguchi, Microelectron. Eng. 160, 81–86 (2016).10.1016/j.mee.2016.03.029Search in Google Scholar

[84] X. D. Huang, L.-R. Bao, X. Cheng, L. J. Guo, S. W. Panga, et al., J. Vac. Sci. Technol. B 20, 2872–2876 (2002).10.1116/1.1523404Search in Google Scholar

[85] T. Tsuji and J. Taniguchi, Microelectron. Eng. 141, 117–121 (2015).10.1016/j.mee.2015.02.008Search in Google Scholar

Received: 2019-01-08
Accepted: 2019-04-25
Published Online: 2019-05-30
Published in Print: 2019-06-26

©2019 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2019-0004/html
Scroll to top button