Abstract
The ever-growing trend of device multifunctionality and miniaturization puts enormous burden on existing manufacturing technologies. The requirements for precision, throughput, and cost become increasingly harder to achieve with minimal room for compromises. Femtosecond lasers, which saw immense development throughout the last few decades, have been proven time and time again to be a superb tool capable of standing up to the challenges posed by modern science and the industry for ultrahigh-precision material processing. Thus, this paper is dedicated to provide an outlook on how femtosecond pulses are revolutionizing modern manufacturing. We will show how they are exploited for various kinds of material processing, including subtractive (ablation, cutting, and etching), additive (lithography and laser-induced forward transfer), or hybrid subtractive-additive cases. The advantages of using femtosecond lasers in such applications, with main focus on how they enable the most precise kinds of material processing, will be highlighted. Future prospects concerning emerging industrial applications and the future of the technology itself will be discussed.
References
[1] H. Lasi, P. Fettke, H. G. Kemper, T. Feld and M. Hoffman, BISE 6, 239–242 (2014).10.1007/s12599-014-0334-4Search in Google Scholar
[2] J.-M. Lehn, Science 295, 2400–2403 (2002).10.1126/science.1071063Search in Google Scholar
[3] L. Wang and Q. Li, Adv. Funct. Mater. 26, 10–28 (2015).10.1002/adfm.201502071Search in Google Scholar
[4] J. W. Stansbury and M. J. Idacavage, Dent. Mater. 32, 54–64 (2016).10.1016/j.dental.2015.09.018Search in Google Scholar
[5] L. Jonušauskas, S. Juodkazis and M. Malinauskas, J. Opt. 20, 053001 (2018).10.1088/2040-8986/aab3feSearch in Google Scholar
[6] B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben and A. Tünnermann, Appl. Phys. A 63, 109–115 (1996).10.1007/BF01567637Search in Google Scholar
[7] D. Sola and J. Peña, Materials 6, 5302–5313 (2013).10.3390/ma6115302Search in Google Scholar
[8] U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, et al., IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).10.1109/2944.571743Search in Google Scholar
[9] K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto and M. Schmidt, Phys. Proc. 12, 230–238 (2011).10.1016/j.phpro.2011.03.128Search in Google Scholar
[10] J. N. Gonsalves and W. W. Duley, J. Appl. Phys. 43, 4684–4687 (1972).10.1063/1.1660989Search in Google Scholar
[11] H. Tonshoff, D. Hesse and J. Mommsen, CIRP Ann. 42, 247–251 (1993).10.1016/S0007-8506(07)62436-6Search in Google Scholar
[12] A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, et al., Opt. Commun. 198, 141–146 (2001).10.1016/S0030-4018(01)01485-7Search in Google Scholar
[13] U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, et al., Opt. Lett. 24, 411–413 (1999).10.1364/OL.24.000411Search in Google Scholar
[14] L. V. Keldysh, Sov. Phys. JETP 20, 1307–1314 (1965).Search in Google Scholar
[15] C. B. Schaffer, A. Brodeur and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).10.1088/0957-0233/12/11/305Search in Google Scholar
[16] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas and S. Juodkazis, Opt. Express 18, 10209 (2010).10.1364/OE.18.010209Search in Google Scholar
[17] L. Jonušauskas, M. Lau, P. Gruber, B. Gokce, S. Barcikowski, et al., Nanotechnology 27, 154001 (2016).10.1088/0957-4484/27/15/154001Search in Google Scholar
[18] D. Arnold and E. Cartier, Phys. Rev. B 46, 15102–15115 (1992).10.1103/PhysRevB.46.15102Search in Google Scholar
[19] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, et al., Phys. Rev. B 53, 1749 (1996).10.1103/PhysRevB.53.1749Search in Google Scholar
[20] P. S. Binder, J. Cataract. Refract. Surg. 30, 26–32 (2004).10.1016/S0886-3350(03)00578-9Search in Google Scholar
[21] E. Garškaitė, L. Alinauskas, M. Drienovsky, J. Krajcovic, R. Cicka, et al., RSC Adv. 6, 72733–72743 (2016).10.1039/C6RA11679ESearch in Google Scholar
[22] K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa and M. Obara, Appl. Phys. A 69, S359–S366 (1999).10.1007/s003390051417Search in Google Scholar
[23] J. Kruger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, et al., Appl. Surf. Sci. 127–129, 892–898 (1998).10.1016/S0169-4332(97)00763-0Search in Google Scholar
[24] S. Xu, J. Qiu, T. Jia, C. Li, H. Sun, et al., Opt. Commun. 274, 163–166 (2007).10.1016/j.optcom.2007.01.079Search in Google Scholar
[25] C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, et al., Nature 537, 84–88 (2016).10.1038/nature18619Search in Google Scholar PubMed
[26] J.-W. Yao, C.-Y. Zhang, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, et al., Opt. Express 20, 905 (2012).10.1364/OE.20.000905Search in Google Scholar PubMed
[27] D. Gailevičius, V. Koliadenko, V. Purlys, M. Peckus, V. Taranenko, et al., Sci. Rep. 6, 34173 (2016).10.1038/srep34173Search in Google Scholar PubMed PubMed Central
[28] R. Jagdheesh, B. Pathiraj, E. Karatay, G. R. B. E. Roomer and A. J. Huis in‘t Veld, Langmuir 27, 8464–8469 (2011).10.1021/la2011088Search in Google Scholar PubMed
[29] D. V. Ta, A. Dunn, T. J. Wasley, R. W. Kay, J. Stringer, et al., Appl. Surf. Sci. 357, 248–254 (2015).10.1016/j.apsusc.2015.09.027Search in Google Scholar
[30] S. Moradi, S. Kamal, P. Englezos and S. G. Hatzikiriakos, Nanotechnology 24, 415302 (2013).10.1088/0957-4484/24/41/415302Search in Google Scholar PubMed
[31] M. Martnez-Calderon, A. Rodrguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, et al., Appl. Surf. Sci. 374, 81–89 (2016).10.1016/j.apsusc.2015.09.261Search in Google Scholar
[32] J. E. Sipe, J. F. Young, J. S. Preston and H. M. van Driel, Phys. Rev. B 27, 1141–1154 (1983).10.1103/PhysRevB.27.1141Search in Google Scholar
[33] A. Borowiec and H. K. Haugen, Appl. Phys. Lett. 82, 4462–4464 (2003).10.1063/1.1586457Search in Google Scholar
[34] T. Baldacchini, J. E. Carey, M. Zhou and E. Mazur, Langmuir 22, 4917–4919 (2006).10.1021/la053374kSearch in Google Scholar PubMed
[35] A. Milionis, D. Fragouli, F. Brandi, I. Liakos, S. Barroso, et al., Appl. Surf. Sci. 351, 74–82 (2015).10.1016/j.apsusc.2015.05.087Search in Google Scholar
[36] S. F. Toosi, S. Moradi, S. Kamal and S. G. Hatzikiriakos, Appl. Surf. Sci. 349, 715–723 (2015).10.1016/j.apsusc.2015.05.026Search in Google Scholar
[37] M. Martnez-Calderon, J. J. Azkona, N. Casquero, A. Rodrguez, M. Domke, et al., Sci. Rep. 8, 14262 (2018).10.1038/s41598-018-32520-0Search in Google Scholar PubMed PubMed Central
[38] W. Cai, A. R. Libertun and R. Piestun, Opt. Express 14, 3785–3791 (2006).10.1364/OE.14.003785Search in Google Scholar PubMed
[39] R. Taylor, C. Hnatovsky and E. Simova, Laser Photonics Rev. 2, 26–46 (2008).10.1002/lpor.200710031Search in Google Scholar
[40] M. Beresna, M. Gecevičius, P. G. Kazansky and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).10.1063/1.3590716Search in Google Scholar
[41] C. A. Ross, D. G. MacLachlan, D. Choudhury and R. R. Thomson, Opt. Express 26, 24343–24356 (2018).10.1364/OE.26.024343Search in Google Scholar PubMed
[42] M. Hörstmann-Jungemann, J. Gottmann and M. Keggenhoff, J. Laser. Micro. Nanoeng. 5, 145–149 (2010).10.2961/jlmn.2010.02.0009Search in Google Scholar
[43] J. Gottmann, M. Hermans and J. Ortmann, J. Laser. Micro. Nanoeng. 8, 15–18 (2013).10.2961/jlmn.2013.01.0004Search in Google Scholar
[44] A. Žemaitis, M. Gaidys, P. Gečys, G. Račiukaitis and M. Gedvilas, Opt. Lasers Eng. 114, 83–89 (2018).10.1016/j.optlaseng.2018.11.001Search in Google Scholar
[45] Y. Bellouard, A. Said, M. Dugan and P. Bado, Opt. Express 12, 2120–2129 (2004).10.1364/OPEX.12.002120Search in Google Scholar PubMed
[46] H. Paris, H. Mokhtarian, E. Coatanéa, M. Museau and I. F. Ituarte, CIRP Ann. Manuf. Technol. 65, 29–32 (2016).10.1016/j.cirp.2016.04.036Search in Google Scholar
[47] M. Han, W. Lee, S.-K. Lee and S. S. Lee, Sens. Actuator 111, 14–20 (2004).10.1016/j.sna.2003.10.006Search in Google Scholar
[48] S. Maruo, O. Nakamura and S. Kawata, Opt. Lett. 22, 132–134 (1997).10.1364/OL.22.000132Search in Google Scholar PubMed
[49] S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Nature 412, 697–698 (2001).10.1038/35089130Search in Google Scholar PubMed
[50] M. Thiel, J. Fischer, G. Von Freymann and M. Wegener, Appl. Phys. Lett. 97, 221102 (2010).10.1063/1.3521464Search in Google Scholar
[51] R. Buividas, S. Rekštytė, M. Malinauskas and S. Juodkazis, Opt. Mater. Express 3, 1674–1686 (2013).10.1364/OME.3.001674Search in Google Scholar
[52] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, et al., Science 325, 1513–1515 (2009).10.1126/science.1177031Search in Google Scholar PubMed
[53] L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, et al., Materials 10, 12 (2017).10.3390/ma10010012Search in Google Scholar PubMed PubMed Central
[54] C. W. Ha, P. Prabhakaran and K.-S. Lee, MRS Commun. 9, 53–66 (2018).10.1557/mrc.2018.218Search in Google Scholar
[55] J. Qu, M. Kadic, A. Naber and M. Wegener, Sci. Rep. 7, 40643 (2017).10.1038/srep40643Search in Google Scholar PubMed PubMed Central
[56] C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, et al., Sci. Rep. 3, 1258 (2013).10.1038/srep01258Search in Google Scholar PubMed PubMed Central
[57] A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, et al., Sci. Rep. 6, 25380 (2016).10.1038/srep25380Search in Google Scholar PubMed PubMed Central
[58] M. Power, A. J. Thompson, S. Anastasova and G.-Z. Yang, Small 14, 1703964 (2018).10.1002/smll.201703964Search in Google Scholar PubMed
[59] J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, et al., Biofabrication 7, 015015 (2015).10.1088/1758-5090/7/1/015015Search in Google Scholar PubMed
[60] B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, et al., Adv. Mater. 29, 1604342 (2017).10.1002/adma.201604342Search in Google Scholar PubMed
[61] D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, et al., Laser Photonics Rev. 8, 458–467 (2014).10.1002/lpor.201400005Search in Google Scholar
[62] L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, et al., Opt. Eng. 56, 094108 (2017).10.1117/1.OE.56.9.094108Search in Google Scholar
[63] T. Gissibl, S. Thiele, A. Herkommer and H. Giessen, Nat. Photonics 10, 554–560 (2016).10.1038/nphoton.2016.121Search in Google Scholar
[64] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, et al., Opt. Lett. 38, 2376–2378 (2013).10.1364/OL.38.002376Search in Google Scholar PubMed
[65] M. Farsari, M. Vamvakaki and B. N. Chichkov, J. Opt. 12, 124001 (2010).10.1088/2040-8978/12/12/124001Search in Google Scholar
[66] C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, et al., Angew. Chem. Int. Ed. 56, 15828–15845 (2017).10.1002/anie.201704695Search in Google Scholar PubMed
[67] S. Rekštytė, D. Paipulas, M. Malinauskas and V. Mizeikis, Nanotechnology 28, 124001 (2017).10.1088/1361-6528/aa5d4dSearch in Google Scholar PubMed
[68] T. A. Klar, R. Wollhofen and J. Jacak, Phys. Scr. 2014, 014049 (2014).10.1088/0031-8949/2014/T162/014049Search in Google Scholar
[69] J. Fischer, G. Freymann and M. Wegener, Adv. Mater. 22, 3578–3582 (2010).10.1002/adma.201000892Search in Google Scholar PubMed
[70] S. Lightman, R. Gvishi, G. Hurvitz and A. Arie, Opt. Lett. 40, 4460–4463 (2015).10.1364/OL.40.004460Search in Google Scholar PubMed
[71] R. Suriano, T. Zandrini, C. de Marco, R. Osellame, S. Turri, et al., Nanotechnology 27, 155702 (2016).10.1088/0957-4484/27/15/155702Search in Google Scholar PubMed
[72] Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, et al., Adv. Mater. Technol. 4, 1800522 (2018).10.1002/admt.201800522Search in Google Scholar
[73] M. J. Ventura, C. Bullen and M. Gu, Opt. Express 15, 1817–1822 (2007).10.1364/OE.15.001817Search in Google Scholar
[74] S. Ushiba, S. Shoji, K. Masui, J. Kono and S. Kawata, Adv. Mater. 26, 5653–5657 (2014).10.1002/adma.201400783Search in Google Scholar PubMed
[75] A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, et al., Lith. J. Phys. 50, 55–61 (2010).10.3952/lithjphys.50112Search in Google Scholar
[76] J. Bauer, A. Schroer, R. Schwaiger and O. Kraft, Nat. Mater. 15, 438–443 (2016).10.1038/nmat4561Search in Google Scholar PubMed
[77] G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, et al., Microelectron. Eng. 191, 25–31 (2018).10.1016/j.mee.2018.01.018Search in Google Scholar
[78] D. Gailevičius, V. Padolskytė, L. Mikoliunaite, S. Sakirzanovas, S. Juodkazis, et al., Nanoscale Horizons. In press (2018).Search in Google Scholar
[79] R. J. Baseman, A. Gupta, R. C. Sausa and C. Progler, Mater. Res. Soc. Symp. Proc. 101, 237 (1987).10.1557/PROC-101-237Search in Google Scholar
[80] F. J. Adrian, J. Bohandy, B. F. Kim, A. N. Jette and P. Thompson, J. Vac. Sci. Technol. B 5, 1490–1494 (1987).10.1116/1.583661Search in Google Scholar
[81] C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis and I. Zergioti, Appl. Phys. Lett. 96, 041104 (2010).10.1063/1.3299004Search in Google Scholar
[82] B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, et al., Tissue Eng. 11, 1817–1823 (2005).10.1089/ten.2005.11.1817Search in Google Scholar PubMed
[83] J. Shaw Steward, T. Lippert, M. Nagel, F. Nüesch and A. Wokaun, Appl. Phys. Lett. 100, 110 (2012).10.1063/1.4717463Search in Google Scholar
[84] A. I. Kuznetsov, R. Kiyan and B. N. Chichkov, Opt. Express 18, 21198–21203 (2010).10.1364/OE.18.021198Search in Google Scholar PubMed
[85] D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills and R. W. Eason, Opt. Mater. Express 5, 1129–1136 (2015).10.1364/OME.5.001129Search in Google Scholar
[86] L. Jonušauskas, E. Skliutas, S. Butkus and M. Malinauskas, Lith. J. Phys. 55, 227–236 (2015).10.3952/physics.v55i3.3151Search in Google Scholar
[87] N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, et al., Adv. Mater. Technol. 2, 1700018 (2017).10.1002/admt.201700018Search in Google Scholar
[88] C. N. LaFratta, L. Li and J. T. Fourkas, Proc. Natl. Acad. Sci. 103, 8589–8594 (2006).10.1073/pnas.0603247103Search in Google Scholar PubMed PubMed Central
[89] A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, et al., Biofabrication 2, 014104 (2010).10.1088/1758-5082/2/1/014104Search in Google Scholar PubMed
[90] T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, et al., Opt. Express 25, 26280–26288 (2017).10.1364/OE.25.026280Search in Google Scholar PubMed
[91] V. Tomkus, V. Girdauskas, J. Dudutis, P. Gečys, V. Stankevič, et al., Opt. Express 26, 27965–27977 (2018).10.1364/OE.26.027965Search in Google Scholar PubMed
[92] Y. Zhang, S. Fan, L. Yan, L. Zhang, X. Zhang, et al., Opt. Express 25, 21719–21725 (2017).10.1364/OE.25.021719Search in Google Scholar PubMed
[93] F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, et al., Opt. Lett. 40, 2517–2520 (2015).10.1364/OL.40.002517Search in Google Scholar PubMed
[94] F. V. Potemkin, B. G. Bravy, V. I. Kozlovsky, Y. V. Korostelin, E. A. Migal, et al., Laser Phys. Lett. 13, 015401 (2015).10.1088/1612-2011/13/1/015401Search in Google Scholar
[95] J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, et al., J. Biomed. Opt. 17, 105008 (2012).10.1117/1.JBO.17.10.105008Search in Google Scholar
[96] A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, et al., Nat. Commun. 9, 593 (2018).10.1038/s41467-018-03071-9Search in Google Scholar PubMed PubMed Central
[97] L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, et al., Mesoscale laser 3D printing. Opt. Express 27, 15205–15221 (2019).10.1364/OE.27.015205Search in Google Scholar PubMed
[98] Y. Nakata, Y. Matsuba and N. Miyanaga, Appl. Phys. A 122, 532 (2016).10.1007/s00339-016-0061-4Search in Google Scholar
[99] L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, et al., Opt. Lasers Eng. 70, 26–32 (2015).10.1016/j.optlaseng.2015.02.006Search in Google Scholar
[100] P. S. Salter, M. Baum, I. Alexeev, M. Schmidt and M. J. Booth, Opt. Express 22, 17644–17656 (2014).10.1364/OE.22.017644Search in Google Scholar PubMed
©2019 THOSS Media & De Gruyter, Berlin/Boston
Articles in the same Issue
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography
Articles in the same Issue
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography