Abstract
This paper addresses the decomposition kinetics of synthesized homogeneous expanded austenite formed by gaseous nitriding of stainless steel AISI 304L and AISI 316L with nitrogen contents up to 38 at.% nitrogen. Isochronal annealing experiments were carried out in both inert (N2) and reducing (H2) atmospheres. Differential thermal analysis (DTA) and thermogravimetry were applied for identification of the decomposition reactions and X-ray diffraction analysis was applied for phase analysis. CrN precipitated upon annealing; the activation energies are 187 kJ/mol and 128 kJ/mol for AISI 316L and AISI 304L, respectively. Isothermal stability plots for expanded austenite developed from AISI 304L and AISI 316 were obtained.
-
Financial support by the Danish Research Agency under grant 26-01-0079 is gratefully acknowledged. The authors would like to thank Kristian V. Dahl for providing Thermo-Calc calculations and Finn T. Petersen (Sandvik) for providing stainless steel thin foil material.
References
[1] Y. Sun, T. Bell, Z. Kolosvary, J. Flis: Heat Treatment of Metals 26 (1999) 9.Suche in Google Scholar
[2] X. Xu, L. Wang, Z. Yu, J. Qiang, Z. Hei: Metall. Mater. Trans. A 31 (2000) 1193.10.1007/s11661-000-0115-1Suche in Google Scholar
[3] C. Blawert, B.L. Mordike, Y. Jirásková, O. Schneeweiss: Surf. and Coat. Techn. 116–119 (1999) 189.10.1016/S0257-8972(99)00086-9Suche in Google Scholar
[4] X.B. Tian, Z.M. Zeng, B.Y. Tang, T.K. Kwok, P.K. Chu: Surf. and Coat. Techn. 128–129 (2000) 226.10.1016/S0257-8972(00)00652-6Suche in Google Scholar
[5] X.Y. Li, Y. Sun, T. Bell: Z. Metallkd. 90 (1999) 901.Suche in Google Scholar
[6] Y. Jirásková, C. Blawert, O. Schneeweiss: Phys. Stat. Sol. 175 (1999) 537.10.1002/(SICI)1521-396X(199910)175:2<537::AID-PSSA537>3.0.CO;2-BSuche in Google Scholar
[7] X.Y. Li, H. Dong: Mater. Sci. Techn. 19 (2003) 1427.10.1179/026708303225007924Suche in Google Scholar
[8] E. Menthe, K.T. Rie: Surf. and Coat. Techn. 116–119 (1999) 199.10.1016/S0257-8972(99)00085-7Suche in Google Scholar
[9] E.J. Mittemeijer: J. Mater. Science 27 (1992) 3977.10.1007/BF01105093Suche in Google Scholar
[10] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer: J. Mater. Science 37 (2002) 1321.10.1023/A:1014556109351Suche in Google Scholar
[11] F. Liu, F. Sommer, E.J. Mittemeijer: J. Mater. Science 39 (2004) 1621.10.1023/B:JMSC.0000016161.79365.69Suche in Google Scholar
[12] M.A.J. Somers, T. Christiansen, P. Møller: Case hardening of stainless steel, Danish Patent DK174707 B1 and PCT/DK03/ 00497Suche in Google Scholar
[13] T. Christiansen, M.A.J. Somers: Metall. Mater. Trans. A, in press.Suche in Google Scholar
[14] M.A.J. Somers: Ph.D. Thesis, T.U. Delft, 1989.Suche in Google Scholar
[15] E.J. Mittemeijer, M.H. Biglari, A.J. Böttger, N.M. van der Pers, W.G. Sloof, F.D. Tichelaar: Scripta Mater. 41(6) (1999) 625.10.1016/S1359-6462(99)00143-8Suche in Google Scholar
[16] E.J. Mittemeijer, M.A.J. Somers: Surf. Eng. 13(6) (1997) 483.10.1179/sur.1997.13.6.483Suche in Google Scholar
[17] H.J. Grabke: Mater. Sci. Forum 154 (1994) 69.10.4028/www.scientific.net/MSF.154.69Suche in Google Scholar
[18] L. Cheng, E.J. Mittemeijer: Metall. Trans. A 21 (1990) 13.10.1007/BF02656420Suche in Google Scholar
[19] M.A.J. Somers, E.J. Mittemeijer: Metall. Mater. Trans. A 26 (1995) 57.10.1007/BF02669794Suche in Google Scholar
[20] H. Bester, K.W. Lange: Arch. Eisenhüttenwesen 43 (1972) 207.10.1002/srin.197201792Suche in Google Scholar
[21] T. Christiansen, M.A.J. Somers: Determination of concentration dependent diffusion coefficients of nitrogen in expanded austenite, in preparation.Suche in Google Scholar
[22] M.A.J. Somers, R.M. Lankreijer, E. J. Mittemeijer: Phil. Mag. A 59(2) (1989) 353.10.1080/01418618908205064Suche in Google Scholar
[23] R.A. Perkins: Metall. Trans. A 4 (1973) 1665.10.1007/BF02666194Suche in Google Scholar
[24] R.A. Perkins, R.A. Padgett, JR, N.K. Tunali: Metall. Trans. A 4 (1973) 2535.10.1007/BF02644255Suche in Google Scholar
[25] S.S. Hosmani, R.E. Schacherl, E.J. Mittemeijer: Mater. Sci. Techn. 21(1) (2005) 113.10.1179/174328405X16289Suche in Google Scholar
© 2006 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen