Abstract
Elevated temperature tensile properties of AlSi7Mg (Al-7 %Si– 0.7 %Mg) and its composites with 10 and 20 vol.% SiCp in the as-extruded form were investigated. The cast ingots of the matrix alloy and the composites were produced by the permanent die casting technique and extruded at 480 °C using an extrusion ratio of 10 : 1. The high-temperature tensile tests were carried out over the temperature range from 25 to 430 °C. Mechanical properties after extrusion show that the composite samples have strength values superior to that of the matrix alloy at ambient temperature. At elevated temperatures the results indicate that the composites exhibit good strength retention up to 300 °C, above which the strengthening effect of SiCp disappears as the temperature is increased. The strain rate sensitivity “m” was observed to be 0.11 for the matrix alloy, 0.13 and 0.07 for the composites with 10 and 20 vol.% SiCp, respectively, at a test temperature of 430 °C in the strain rate range from 4 × 10 –5 to 4 × 10– 2 s– 1.
References
[1] J.W. Kaczmar, K. Pietrzak,W. Wlosinski: J. Mater. Process. Technol. 106 (2000) 58.10.1016/S0924-0136(00)00639-7Search in Google Scholar
[2] T.R. Chapman, D.E. Niesz, R.T. Fox, T. Fawcett:Wear 276 (1999) 81.10.1016/S0043-1648(99)00259-8Search in Google Scholar
[3] G.A. Rozak, J.J. Lewondowski, J.F. Wallace, A. Atmıs·og˘lu: J. ·Compos. Mater. 26 (1992) 2079.Search in Google Scholar
[4] Y.H. Seo, C.G. Kang: Compos. Sci. Technol. 59 (1999) 643.10.1016/S0266-3538(98)00123-7Search in Google Scholar
[5] İ. Özdemir, Ü. Cöcen, K. Önel: Compos. Sci. Technol. 60 (2000) 411.10.1016/S0266-3538(99)00140-2Search in Google Scholar
[6] H.S. Lee, J.S. Yeo, S.H. Hang, D.J. Yoon, K.H. Na: J. Mater. Process. Technol. 113 (2001) 202.10.1016/S0924-0136(01)00680-XSearch in Google Scholar
[7] Ü. Cöcen, K. Önel: Compos. Sci. Technol. 62 (2002) 275.10.1016/S0266-3538(01)00198-1Search in Google Scholar
[8] G. Gonzalez-Doncel, D.O. Sherby: Metal. Mater. Trans. A 27 (1996) 2837.10.1007/BF02652375Search in Google Scholar
[9] J.C. Le Flour, R. Locicéro: Scr. Metall. 21 (1987) 1071.10.1016/0036-9748(87)90252-3Search in Google Scholar
[10] P.D. Pitcher, J.A. Shakesheff, J.D. Lord: Mater. Sci. Technol. 14 (1998) 1015.10.1179/026708398790613317Search in Google Scholar
[11] M.J. Tan, M.C. Chew, N.P. Hung, T. Sano: J. Mater. Proc. Technol. 67 (1997) 62.10.1016/S0924-0136(96)02819-1Search in Google Scholar
[12] G. Meijer, F. Ellyin, Z. Xia: Composites B 31 (2000) 29.10.1016/S1359-8368(99)00060-8Search in Google Scholar
[13] W. Zheng, B. Zhang, W. Yanwen: Scr. Metal. Mater. 30 (1994) 1367.10.1016/0956-716X(94)90229-1Search in Google Scholar
[14] H.N. Azari, G.S. Murty, G.S. Upadhyaya: Metall. Mater. Trans A 25 (1994) 2153.10.1007/BF02652316Search in Google Scholar
[15] L.B. Zhang, H. Jintao, W.Yanwen: J. Mater. Proc. Technol. 84 (1998) 271.10.1016/S0924-0136(98)00229-5Search in Google Scholar
[16] B.Q. Han, K.C. Chan, W.S. Lau: J. Mater. Proc. Technol. 63 (1997) 395.10.1016/S0924-0136(96)02653-2Search in Google Scholar
[17] H. Watanebe, T. Mukai, T.G. Nieh, K. Higashi: Scr. Mater. 42 (2000) 249.10.1016/S1359-6462(99)00357-7Search in Google Scholar
[18] I.C. Hsiao, J.C. Huang, S.W. Su: Mater. Trans. JIM 40 (1999) 744.10.2320/matertrans1989.40.744Search in Google Scholar
[19] J. Koike, K. Miki, K. Maruyama, H. Oikawa: Phil. Mag. 78 (1998) 599.10.1080/01418619808241925Search in Google Scholar
[20] M. Mabuchi, K. Higashi: Mater. Trans. JIM 40 (1999) 787.10.2320/matertrans1989.40.787Search in Google Scholar
[21] Ü. Cöcen, K. Önel, İ. Özdemir: Compos. Sci. Technol. 57 (1997) 801.10.1016/S0266-3538(97)00049-3Search in Google Scholar
[22] D.L. Davidson: Metall. Trans. A 22 (1991) 97.10.1007/BF03350952Search in Google Scholar
[23] M. Manoharan, J.J. Lewandowski: Acta Metall. Mater. 38 (1990) 489.10.1016/0956-7151(90)90155-ASearch in Google Scholar
[24] D.J. McDanels: Metall Trans. A 16 (1985) 1105.10.1007/BF02811679Search in Google Scholar
[25] D.J. Lloyd: Int. Mater.Rev. 39 (1994) 1.10.1179/imr.1994.39.1.1Search in Google Scholar
[26] C.H.J. Davies, N. Raghunathan, T. Sheppard: Mater. Sci. Technol. 8 (1992) 977.10.1179/mst.1992.8.11.977Search in Google Scholar
[27] M.J. Tan, L.H. Koh, K.A. Khor, F.Y.C. Boey: J. Mater. Process Technol. 37 (1993) 391.10.1016/0924-0136(93)90104-ESearch in Google Scholar
[28] H.C. Kwon, E.P. Yoon: J. Mater. Sci. Letters 15 (1996) 1205.10.1007/BF00274377Search in Google Scholar
[29] W.M. Zhong, G. L’Esperance, M. Suery: Mater. Sci. Eng. A 214 (1996) 104.10.1016/0921-5093(96)10183-0Search in Google Scholar
[30] D. Kwon, S. Lee, B.I. Roh: Metall. Trans. A 24 (1993) 1125.10.1007/BF02657243Search in Google Scholar
[31] S.M. Pickard, B. Derby, J. Harding, M. Taya: Scr. Metall. 22 (1988) 601.10.1016/S0036-9748(88)80167-4Search in Google Scholar
[32] Y.L.Wu, C.G. Chao: Mater. Sci. Eng. A 282 (2000) 193.10.1016/S0921-5093(99)00762-5Search in Google Scholar
[33] T.G. Nieh, K. Xia, T.G. Langdon: J. Eng. Mater. Technol. 110 (1988) 77.10.1115/1.3226033Search in Google Scholar
[34] T.G. Nieh, J. Wadsworth: JOM Nov. (1992) 46.10.1007/BF03222843Search in Google Scholar
© 2006 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen