Abstract
The results of the estimation of the viscosity for Ag – In and In–Sb liquid alloys are presented in this paper. Different theoretical models for viscosity determination, according to the Moelwyn–Hughes, Iida –Ueda –Morita, Kozlov– Romanov– Petrov, Hirai, Seetharaman – DuSichen and Kaptay, have been applied in the process of viscosity calculation at different temperatures – for the Ag– In alloys in the range 1073 – 1273 K and for the In–Sb alloys in the range 873 – 1073 K. The results for both systems, obtained using different models, were compared mutually and with available literature experimental data. The models, mostly capable to predict appropriate viscosity data for investigated binary systems, were defined.
-
The author is thankful to Prof. George Kaptay (Faculty of Materials and Metallurgical Engineering, University of Miskolc, Hungary) for his assistance during the preparation of this work.
References
[1] http://www.ap.univie.ac.at/users/www.cost531Search in Google Scholar
[2] Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Onohana, K. Ishida: J. Electron. Mater. 30 (2001) 1120.10.1007/s11664-001-0138-4Search in Google Scholar
[3] X.J. Liu, T. Yamaki, O. Ohnuma, R. Kainuma, K. Ishida: Mater. Trans. JIM 45 (2004) 637.10.2320/matertrans.45.637Search in Google Scholar
[4] V. Buchtova, D.Živković, J. Vreštal, D. Manasijevic, A. Kroupa: Monatshefte für Chemie 136 (2005) 1939.10.1007/s00706-005-0383-ySearch in Google Scholar
[5] J.S. Hwang: Environment-friendly electronics: lead-free technology, Electrochemical Publications Ltd., Port Erin, British Isles, 2001.Search in Google Scholar
[6] H.L. Hwang, W.Y. Guo, Y.H. Tseng, B.H. Tzeng, L.X. Shao: J. Phys. Chem. Solids 64 (2003) 1729.10.1016/S0022-3697(03)00072-6Search in Google Scholar
[7] G.F. Zhou: Mater. Sci. Eng. A 304 (2001) 73.10.1016/S0921-5093(00)01448-9Search in Google Scholar
[8] H. Nakajima: Trans. JIM 17 (1976) 403.10.2320/matertrans1960.17.403Search in Google Scholar
[9] V.M. Glazov: Izv. AH SSSR, OTN, Metallurgiia i Toplivo 5 (1960) 190 (in Russian).Search in Google Scholar
[10] Z. Wang, S. Cheng, X. Bian, X. Qin, J. Zhang: Rare Metals 22 (2003) 64.Search in Google Scholar
[11] T. Iida, R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford (1993) 193.Search in Google Scholar
[12] B. Nikolaev, J. Vollman: J. Non-Cryst. Solids 208 (1996) 145.10.1016/S0022-3093(96)00195-0Search in Google Scholar
[13] I. Budai, M.Z. Benkõ, G. Kaptay, in: L. Lehoczky, L. Kalmar (Eds.), Proc. MicroCAD 2004 Int. Conf., Section: Materials Science, University of Miskolc (Hungary) (2004) 27.Search in Google Scholar
[14] T.B. Massalski (Ed.): Binary Alloy Phase Diagrams, 2nd Ed., Vol. 1–3, Materials Park, OH – ASM, 1990.10.1007/BF02881154Search in Google Scholar
[15] E.A. Moelwyn–Hughes: Physical Chemistry, Pergamon Press, Oxford (1961).Search in Google Scholar
[16] T. Iida, M. Ueda, Z. Morita: Tetsu-to-Hagane 62 (1976) 1169.10.2355/tetsutohagane1955.62.9_1169Search in Google Scholar
[17] L. Ya. Kozlov, L.M. Romanov, N.N. Petrov: Izv.vysch.uch.zav., Chernaya Metallurgiya 3 (1983) 7 (in Russian).Search in Google Scholar
[18] M. Hirai: Iron Steel Inst. Jpn. Int. 33 (1993) 251.10.2355/isijinternational.33.251Search in Google Scholar
[19] S. Seetharaman, D. Sichen: Metall. Mater. Trans. B 25 (1994) 589.10.1007/BF02650079Search in Google Scholar
[20] G. Kaptay, in: L. Lehoczky, L. Kalmar (Eds.), Proc. MicroCAD 2003 Conference, Section: Metallurgy, University of Miskolc (Hungary) (2003) 23.Search in Google Scholar
[21] X. Zhong, K.C. Chou, Y. Gao, X. Guo: Calphad 25 (2001) 455.10.1016/S0364-5916(01)00064-5Search in Google Scholar
[22] I. Ohnuma, K.J. Liu, H. Ohtani, K. Ishida: J. Electron. Mater. 28 (1999) 1164.10.1007/s11664-999-0152-5Search in Google Scholar
[23] T. Tanaka, K. Hack, S. Hara: MRS Bulletin, 24 (1999) 45.10.1557/S0883769400052180Search in Google Scholar
[24] L. Ohnuma, M. Myashita, K. Anzai, X.J. Liu, H. Ohtani, R.Kainuma, K. Ishida: J. Electron. Mater. 29 (2000) 1137.10.1007/s11664-000-0004-9Search in Google Scholar
[25] L. Ohnuma, Y. Cui, X.J. Liu, Y. Inohama, S. Ishihara, H. Ohtani, R.Kainuma, K. Ishida: J. Electron. Mater. 29 (2000) 1113.10.1007/s11664-000-0002-ySearch in Google Scholar
[26] X. Wang, H. Bao, W. Li: Metal. Mater. Trans: A 33 (2002) 3201.10.1007/s11661-002-0305-0Search in Google Scholar
[27] I. Budai, M.Z. Benko, G. Kaptay: Mater. Sci. Forum 473/474 (2005) 309.10.4028/www.scientific.net/MSF.473-474.309Search in Google Scholar
[28] D.Živković, G. Kaptay, in: R.V. Pantovic (Ed.), Proc. of the 35th International October Conference on Mining and Metallurgy, University of Belgrade, Technical Faculty Bor (Serbia and Montenegro) (2003) 276.Search in Google Scholar
[29] R. Castanet: J. Chim. Phys. 67 (1970) 789.10.1051/jcp/1970670789Search in Google Scholar
[30] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley: Selected Values of Thermodynamic Properties of Binary Alloys, ASM International, Metals Park OH (1973) 810.Search in Google Scholar
[31] C.J. Rosa, N. Rupf-Bolz, F. Sommer, B. Predel: Z. Metallkd. 71 (1980) 320.Search in Google Scholar
[32] B. Predel, G. Oehme: Z. Metallkd. 67 (1976) 826.Search in Google Scholar
[33] V.P. Vasilev: Inorg. Materials 40 (2004) 445.10.1023/B:INMA.0000027589.05401.9cSearch in Google Scholar
[34] Version 1.1 of the COST 531 Database for Lead –Free Solders.Search in Google Scholar
[35] I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson: Calphad 18 (1994) 177.10.1016/0364-5916(94)90027-2Search in Google Scholar
[36] E. Gebhardt, G. Wörwag: Z. Metallkd. 42 (1951) 353.Search in Google Scholar
[37] T. Iida, Z. Morita, S. Takeuchi: J. Japan Inst. Metals 39 (1975) 1169.10.2320/jinstmet1952.39.11_1169Search in Google Scholar
[38] R.P. Chhabra, D.K. Sheth: Z. Metallkd. 81 (1990) 264.Search in Google Scholar
[39] http://www.webelements.com/webelements/elements/text/(AgIn,Sb)/radii.htmlSearch in Google Scholar
[40] R.F. Brooks, A.T. Dinsdale, P.N. Quested: Meas. Sci. Technol. 16 (2005) 354.10.1088/0957-0233/16/2/005Search in Google Scholar
© 2006 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen