Abstract
The results of the estimation of the viscosity for Ag – In and In–Sb liquid alloys are presented in this paper. Different theoretical models for viscosity determination, according to the Moelwyn–Hughes, Iida –Ueda –Morita, Kozlov– Romanov– Petrov, Hirai, Seetharaman – DuSichen and Kaptay, have been applied in the process of viscosity calculation at different temperatures – for the Ag– In alloys in the range 1073 – 1273 K and for the In–Sb alloys in the range 873 – 1073 K. The results for both systems, obtained using different models, were compared mutually and with available literature experimental data. The models, mostly capable to predict appropriate viscosity data for investigated binary systems, were defined.
-
The author is thankful to Prof. George Kaptay (Faculty of Materials and Metallurgical Engineering, University of Miskolc, Hungary) for his assistance during the preparation of this work.
References
[1] http://www.ap.univie.ac.at/users/www.cost531Suche in Google Scholar
[2] Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Onohana, K. Ishida: J. Electron. Mater. 30 (2001) 1120.10.1007/s11664-001-0138-4Suche in Google Scholar
[3] X.J. Liu, T. Yamaki, O. Ohnuma, R. Kainuma, K. Ishida: Mater. Trans. JIM 45 (2004) 637.10.2320/matertrans.45.637Suche in Google Scholar
[4] V. Buchtova, D.Živković, J. Vreštal, D. Manasijevic, A. Kroupa: Monatshefte für Chemie 136 (2005) 1939.10.1007/s00706-005-0383-ySuche in Google Scholar
[5] J.S. Hwang: Environment-friendly electronics: lead-free technology, Electrochemical Publications Ltd., Port Erin, British Isles, 2001.Suche in Google Scholar
[6] H.L. Hwang, W.Y. Guo, Y.H. Tseng, B.H. Tzeng, L.X. Shao: J. Phys. Chem. Solids 64 (2003) 1729.10.1016/S0022-3697(03)00072-6Suche in Google Scholar
[7] G.F. Zhou: Mater. Sci. Eng. A 304 (2001) 73.10.1016/S0921-5093(00)01448-9Suche in Google Scholar
[8] H. Nakajima: Trans. JIM 17 (1976) 403.10.2320/matertrans1960.17.403Suche in Google Scholar
[9] V.M. Glazov: Izv. AH SSSR, OTN, Metallurgiia i Toplivo 5 (1960) 190 (in Russian).Suche in Google Scholar
[10] Z. Wang, S. Cheng, X. Bian, X. Qin, J. Zhang: Rare Metals 22 (2003) 64.Suche in Google Scholar
[11] T. Iida, R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford (1993) 193.Suche in Google Scholar
[12] B. Nikolaev, J. Vollman: J. Non-Cryst. Solids 208 (1996) 145.10.1016/S0022-3093(96)00195-0Suche in Google Scholar
[13] I. Budai, M.Z. Benkõ, G. Kaptay, in: L. Lehoczky, L. Kalmar (Eds.), Proc. MicroCAD 2004 Int. Conf., Section: Materials Science, University of Miskolc (Hungary) (2004) 27.Suche in Google Scholar
[14] T.B. Massalski (Ed.): Binary Alloy Phase Diagrams, 2nd Ed., Vol. 1–3, Materials Park, OH – ASM, 1990.10.1007/BF02881154Suche in Google Scholar
[15] E.A. Moelwyn–Hughes: Physical Chemistry, Pergamon Press, Oxford (1961).Suche in Google Scholar
[16] T. Iida, M. Ueda, Z. Morita: Tetsu-to-Hagane 62 (1976) 1169.10.2355/tetsutohagane1955.62.9_1169Suche in Google Scholar
[17] L. Ya. Kozlov, L.M. Romanov, N.N. Petrov: Izv.vysch.uch.zav., Chernaya Metallurgiya 3 (1983) 7 (in Russian).Suche in Google Scholar
[18] M. Hirai: Iron Steel Inst. Jpn. Int. 33 (1993) 251.10.2355/isijinternational.33.251Suche in Google Scholar
[19] S. Seetharaman, D. Sichen: Metall. Mater. Trans. B 25 (1994) 589.10.1007/BF02650079Suche in Google Scholar
[20] G. Kaptay, in: L. Lehoczky, L. Kalmar (Eds.), Proc. MicroCAD 2003 Conference, Section: Metallurgy, University of Miskolc (Hungary) (2003) 23.Suche in Google Scholar
[21] X. Zhong, K.C. Chou, Y. Gao, X. Guo: Calphad 25 (2001) 455.10.1016/S0364-5916(01)00064-5Suche in Google Scholar
[22] I. Ohnuma, K.J. Liu, H. Ohtani, K. Ishida: J. Electron. Mater. 28 (1999) 1164.10.1007/s11664-999-0152-5Suche in Google Scholar
[23] T. Tanaka, K. Hack, S. Hara: MRS Bulletin, 24 (1999) 45.10.1557/S0883769400052180Suche in Google Scholar
[24] L. Ohnuma, M. Myashita, K. Anzai, X.J. Liu, H. Ohtani, R.Kainuma, K. Ishida: J. Electron. Mater. 29 (2000) 1137.10.1007/s11664-000-0004-9Suche in Google Scholar
[25] L. Ohnuma, Y. Cui, X.J. Liu, Y. Inohama, S. Ishihara, H. Ohtani, R.Kainuma, K. Ishida: J. Electron. Mater. 29 (2000) 1113.10.1007/s11664-000-0002-ySuche in Google Scholar
[26] X. Wang, H. Bao, W. Li: Metal. Mater. Trans: A 33 (2002) 3201.10.1007/s11661-002-0305-0Suche in Google Scholar
[27] I. Budai, M.Z. Benko, G. Kaptay: Mater. Sci. Forum 473/474 (2005) 309.10.4028/www.scientific.net/MSF.473-474.309Suche in Google Scholar
[28] D.Živković, G. Kaptay, in: R.V. Pantovic (Ed.), Proc. of the 35th International October Conference on Mining and Metallurgy, University of Belgrade, Technical Faculty Bor (Serbia and Montenegro) (2003) 276.Suche in Google Scholar
[29] R. Castanet: J. Chim. Phys. 67 (1970) 789.10.1051/jcp/1970670789Suche in Google Scholar
[30] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley: Selected Values of Thermodynamic Properties of Binary Alloys, ASM International, Metals Park OH (1973) 810.Suche in Google Scholar
[31] C.J. Rosa, N. Rupf-Bolz, F. Sommer, B. Predel: Z. Metallkd. 71 (1980) 320.Suche in Google Scholar
[32] B. Predel, G. Oehme: Z. Metallkd. 67 (1976) 826.Suche in Google Scholar
[33] V.P. Vasilev: Inorg. Materials 40 (2004) 445.10.1023/B:INMA.0000027589.05401.9cSuche in Google Scholar
[34] Version 1.1 of the COST 531 Database for Lead –Free Solders.Suche in Google Scholar
[35] I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson: Calphad 18 (1994) 177.10.1016/0364-5916(94)90027-2Suche in Google Scholar
[36] E. Gebhardt, G. Wörwag: Z. Metallkd. 42 (1951) 353.Suche in Google Scholar
[37] T. Iida, Z. Morita, S. Takeuchi: J. Japan Inst. Metals 39 (1975) 1169.10.2320/jinstmet1952.39.11_1169Suche in Google Scholar
[38] R.P. Chhabra, D.K. Sheth: Z. Metallkd. 81 (1990) 264.Suche in Google Scholar
[39] http://www.webelements.com/webelements/elements/text/(AgIn,Sb)/radii.htmlSuche in Google Scholar
[40] R.F. Brooks, A.T. Dinsdale, P.N. Quested: Meas. Sci. Technol. 16 (2005) 354.10.1088/0957-0233/16/2/005Suche in Google Scholar
© 2006 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- The Pd-rich part of the Pd–B phase diagram
- Thermodynamic optimizing of the Li–Sn system
- Thermodynamic analysis of high-temperature heazlewoodite
- Diffusion of chromium in β-Ti under high pressure
- Density and surface tension of liquid ternary Ni–Cu–Fe alloys
- Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
- Articles Applied
- Development of cube recrystallization textures in high-purity Al
- Formation of cube recrystallized grains in high-purity Al
- Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
- The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
- Kinetics studies of hydrogen reduction of Cu2O
- Decomposition kinetics of expanded austenite with high nitrogen contents
- Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
- Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
- Notifications/Mitteilungen
- Richtlinien für Autoren
- Instructions for authors
- Personal/ personelles
- Press/ Presse
- Conferences /Konferenzen