Home Thermodynamic optimizing of the Li–Sn system
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic optimizing of the Li–Sn system

  • Zhenmin Du EMAIL logo , Zhenquan Jiang and Cuiping Guo
Published/Copyright: January 7, 2022
Become an author with De Gruyter Brill

Abstract

The Li –Sn system was critically assessed by means of the CALculation of the PHAse Diagram (CALPHAD) technique. The solution phases (liquid, body-centered cubic (αLi), body-centered tetragonal (βSn), hexagonal close-packed (βLi) and diamond (αSn)) were modeled with the Redlich-Kister equation. The intermetallic compounds Li7Sn2 and LiSn, which have a homogeneity range, were treated as the formulae (Li, Sn)7Sn2 and Li(Li, Sn) by a two-sublattice model with Li and Sn or Li on the first sublattice, Sn or Li and Sn on the second one, respectively. The others were treated as stoichiometric compounds. A set of self-consistent thermodynamic parameters describing the Gibbs energy of each individual phase in the Li –Sn system was obtained.


Prof. Zhenmin Du Department of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083, P.R.China Tel./Fax: +86 10 6233 3772

  1. This work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 50471095, 50271008), and the THERMOCALC software was used.

References

[1] R. Yoshimura, T.J. Konno, E. Abe, K. Hiraga: Acta Mater. 51 (2003) 2891.10.1016/S1359-6454(03)00104-6Search in Google Scholar

[2] A.A. Gokhale, V. Singh: J. Mater. Proc. Tech. 159 (2005) 369.10.1016/j.jmatprotec.2004.01.062Search in Google Scholar

[3] G.-T. Zhou, O. Palchik, I. Nowik, R. Herber, Y. Koltypin, A. Gedanken: J. Solid State Chemistry 177 (2004) 3014.10.1016/j.jssc.2004.04.045Search in Google Scholar

[4] Y. Idota, A. Matsufuji, Y. Maekawa, T. Miyasaka: Science 276 (1997) 1395.10.1126/science.276.5317.1395Search in Google Scholar

[5] G. Masing, G. Tammann: Z. Anorg. Chem. 67 (1910) 183.10.1002/zaac.19100670114Search in Google Scholar

[6] A. Baroni: Atti Rend. Accad. Lincei, Roma 16 (1932) 153.Search in Google Scholar

[7] G. Grube, E. Meyer: Z. Elektrochem. 40 (1934) 771.10.1002/bbpc.193400042Search in Google Scholar

[8] M.S. Foster, C.E. Crouthamel, S.E. Wood: J. Phys. Chem. 70 (1966) 3042.10.1021/j100882a004Search in Google Scholar

[9] D.M. Bailey, W.H. Skelton, J.F. Smith: J. Less-Common Met. 64 (1979) 233.10.1016/0022-5088(79)90174-7Search in Google Scholar

[10] C.J. Wen, R.A. Huggins: J. Electrochem. Soc. 128 (1981) 1181.10.1149/1.2127590Search in Google Scholar

[11] A.T. Dadd, P. Hubberstey, P.G. Roberts: J. Chem. Soc. Faraday Trans. 78 (1982) 2735.10.1039/f19827802735Search in Google Scholar

[12] M.W. Barsoum, H.L. Tuller: Metall. Trans. A 19 (1988) 637.10.1007/BF02649277Search in Google Scholar

[13] J. Sangster, C.W. Bale: J. Phase Equibilria 19 (1998) 70.10.1007/s12385-006-5008-6Search in Google Scholar

[14] W. Gasior, Z. Moser,W. Zakulski: J. Non-Crystalline Solids 205– 207 (1996) 379.10.1016/S0022-3093(96)00446-2Search in Google Scholar

[15] A.K. Fischer, S.A. Johnson: J. Chem. Eng. Data 17 (1972) 280.10.1021/je60054a030Search in Google Scholar

[16] A.G. Morachevskii, L.N. Gerasimenko, A.I. Demidov, O.A. Drozdova: Sov. Electrochem. 8 (1972) 1578.Search in Google Scholar

[17] Z. Moser, W. Gassior, F. Sommer, G. Schwitzgebel, B. Predel: Metall. Trans. B 17 (1986) 791.10.1007/BF02657142Search in Google Scholar

[18] V.O. Kubaschewski, W. Seith: Z. Metallkd. 30 (1938) 7.10.1515/ijmr-1938-300103Search in Google Scholar

[19] F. Sommer, B. Fischer, B. Predel (Ed.): Material Behavior and Physical Chemistry in Liquid Metal Systems, H.U. Borgstedt Plenum, New York (1982) 395.10.1007/978-1-4684-8366-6_40Search in Google Scholar

[20] A.T. Dinsdale: Calphad 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[21] M. Hillert, L.I. Staffansson: Acta Chem. Scand. 24 (1970) 3618.10.3891/acta.chem.scand.24-3618Search in Google Scholar

[22] B. Sundman, J. Agren: J. Phys. Chem. Solids 42 (1981) 297.10.1016/0022-3697(81)90144-XSearch in Google Scholar

[23] B. Sundman, B. Jansson, J.-O. Andersson: Calphad 9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar

[24] A. Fernandez Guillermet, W. Huang: Z. Metallkd. 79 (1988) 88.10.1515/ijmr-1988-790204Search in Google Scholar

Received: 2005-06-13
Accepted: 2005-09-25
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. The Pd-rich part of the Pd–B phase diagram
  4. Thermodynamic optimizing of the Li–Sn system
  5. Thermodynamic analysis of high-temperature heazlewoodite
  6. Diffusion of chromium in β-Ti under high pressure
  7. Density and surface tension of liquid ternary Ni–Cu–Fe alloys
  8. Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
  9. Development of cube recrystallization textures in high-purity Al
  10. Formation of cube recrystallized grains in high-purity Al
  11. Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
  12. The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
  13. Kinetics studies of hydrogen reduction of Cu2O
  14. Decomposition kinetics of expanded austenite with high nitrogen contents
  15. Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
  16. Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
  17. Richtlinien für Autoren
  18. Instructions for authors
  19. Personal/ personelles
  20. Press/ Presse
  21. Conferences /Konferenzen
  22. Frontmatter
  23. Editorial
  24. Editorial
  25. Articles Basic
  26. The Pd-rich part of the Pd–B phase diagram
  27. Thermodynamic optimizing of the Li–Sn system
  28. Thermodynamic analysis of high-temperature heazlewoodite
  29. Diffusion of chromium in β-Ti under high pressure
  30. Density and surface tension of liquid ternary Ni–Cu–Fe alloys
  31. Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
  32. Articles Applied
  33. Development of cube recrystallization textures in high-purity Al
  34. Formation of cube recrystallized grains in high-purity Al
  35. Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
  36. The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
  37. Kinetics studies of hydrogen reduction of Cu2O
  38. Decomposition kinetics of expanded austenite with high nitrogen contents
  39. Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
  40. Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
  41. Notifications/Mitteilungen
  42. Richtlinien für Autoren
  43. Instructions for authors
  44. Personal/ personelles
  45. Press/ Presse
  46. Conferences /Konferenzen
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0002/html
Scroll to top button