Home Technology Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy

  • Kaiwen Huai , Jianting Guo EMAIL logo , Qiang Gao and Rui Yang
Published/Copyright: January 7, 2022

Abstract

The microstructure and compressive behavior of the NiAl – 28Cr – 6Mo alloy doped with various amounts of Nb have been investigated. The results show that the microstructure of all Nb-doped alloys mainly consists of three phases, viz. the gray lamellar Cr(Mo) plate, the black NiAl matrix, and Cr2Nb with C14-structure-type 1 Laves phase semicontinuously distributed at the cell boundary. All Nb-doped alloys exhibit relatively good room-temperature compressive ductility and higher yield strength at all temperatures compared to the NiAl – 28Cr – 6Mo eutectic alloy due to the presence of Laves phase. It is found that the NiAl – 28Cr – 6Mo alloy doped with 1 at.% Nb attains the optimum concerning high temperature strength and room temperature ductility.


Professor Jianting Guo Superalloys Division, Institute of Metal Research The Chinese Academy of Sciences Wenhua Road 72, Shenyang, 110016, P.R.China Tel.: +86 24 2397 1907 Fax: +86 24 8397 8045

  1. The authors would like to acknowledge the National Natural Science Foundation of China (contract No. 59895152) and the National High Technology Committee of China (contract No. 863-715-005-0030) for financial supports.

References

[1] R.D. Noebe, R.R. Bowman, M.V. Nathal: Int. Mater. Rev. 38 (1993) 193.10.1179/imr.1993.38.4.193Search in Google Scholar

[2] D.B. Miracle: Acta Mater. 41 (1993) 649.10.1016/0956-7151(93)90001-9Search in Google Scholar

[3] R. Rablbauer, R. Fischer, G. Frommeyer: Z. Metallkd. 95 (2004) 525.10.3139/146.017973Search in Google Scholar

[4] G. Frommeyer, C. Derder: J. de Physique 7 (1997) 2393.Search in Google Scholar

[5] G. Frommeyer, R. Fischer, J. Deges, R. Rablbaur, A. Schneider: Ultramicroscopy 101 (2004) 139.10.1016/j.ultramic.2004.05.006Search in Google Scholar

[6] J.A. Jimenez, S. Klaus, M. Carsi, O.A. Ruano, G. Frommeyer: Acta Mater. 47 (1999) 3655.10.1016/S1359-6454(99)00218-9Search in Google Scholar

[7] G. Frommeyer, R. Rablbauer, in: MRS Symp. Conf. Proc. 753 (2003) 193.Search in Google Scholar

[8] D.R. Johnson, X.F. Chen, B.F Oliver, R.D. Noebe, J.D. Whitten-berger: Intermetallics 3 (1995) 99.10.1016/0966-9795(95)92674-OSearch in Google Scholar

[9] J.M. Yang, S.M. Jeng, K. Bain, R.A. Amato: Acta Mater. 45 (1997) 195.10.1016/S1359-6454(96)00323-0Search in Google Scholar

[10] J.T. Guo: Ordered intermetallic compound NiAl alloy, The Science Press, China (2003).Search in Google Scholar

[11] J.T. Guo, C.Y. Cui, Y.H. Qi, H.Q. Ye: J. Alloys and Comp. 343 (2002) 142.10.1016/S0925-8388(02)00205-0Search in Google Scholar

[12] K. Vedula, V. Pathare, I. Aslamidis, R.H. Titran: Mater. Res. Soc. Symp. Proc. 39 (1985) 411.10.1557/PROC-39-411Search in Google Scholar

[13] C.T. Liu, J.A. Horton: Mater. Sci. Eng A 192 (1995) 170.10.1016/0921-5093(94)03232-7Search in Google Scholar

[14] A.V. Keitz, G. Sauthoff: Intermetallics 5 (2002) 497.10.1016/S0966-9795(02)00025-0Search in Google Scholar

[15] X.F. Chen, D.R. Hohnson, B.F. Pliver: Scripta Metall. Mater. 30 (1994) 975.10.1016/0956-716X(94)90540-1Search in Google Scholar

[16] A. Sinha: Progr. Mater. Sci. 15 (1972) 79.10.1016/0079-6425(72)90002-3Search in Google Scholar

[17] F. Laves: Theory of alloy phase, Metals Park, OH, American Society for Metals (1956) 124.Search in Google Scholar

[18] B. Zeumer, G. Sauthoff: Intermetallics 6 (1998) 451.10.1016/S0966-9795(97)00094-0Search in Google Scholar

[19] B. Zeumer, G. Sauthoff: Intermetallics 5 (1997) 563.10.1016/S0966-9795(97)00031-9Search in Google Scholar

[20] D.J. Thorma, J. Perepezko: Mater. Sci. Eng A 156 (1991) 97.10.1016/0921-5093(92)90420-6Search in Google Scholar

[21] K.S. Kumar, C.T. Liu: Acta Mater. 45 (1997) 3671.10.1016/S1359-6454(97)00050-5Search in Google Scholar

[22] C.T. Liu, P.F. Tortorell, J.A. Horton, C.A. Carmichael: Mater. Sci. Eng A 214 (1996) 23.10.1016/0921-5093(96)10197-0Search in Google Scholar

[23] F. Laves, H. Witte: Metallwirtschaft 14 (1935) 645.Search in Google Scholar

[24] F. Laves, H. Witte: Metallwirtschaft 1 (1936) 840.Search in Google Scholar

[25] H. E. Cline, J.L. Walter, E.F. Osika, L.M. Osika: Acta Mater. 19 (1971) 405.10.1016/0001-6160(71)90163-5Search in Google Scholar

Received: 2005-03-06
Accepted: 2005-08-11
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. The Pd-rich part of the Pd–B phase diagram
  4. Thermodynamic optimizing of the Li–Sn system
  5. Thermodynamic analysis of high-temperature heazlewoodite
  6. Diffusion of chromium in β-Ti under high pressure
  7. Density and surface tension of liquid ternary Ni–Cu–Fe alloys
  8. Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
  9. Development of cube recrystallization textures in high-purity Al
  10. Formation of cube recrystallized grains in high-purity Al
  11. Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
  12. The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
  13. Kinetics studies of hydrogen reduction of Cu2O
  14. Decomposition kinetics of expanded austenite with high nitrogen contents
  15. Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
  16. Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
  17. Richtlinien für Autoren
  18. Instructions for authors
  19. Personal/ personelles
  20. Press/ Presse
  21. Conferences /Konferenzen
  22. Frontmatter
  23. Editorial
  24. Editorial
  25. Articles Basic
  26. The Pd-rich part of the Pd–B phase diagram
  27. Thermodynamic optimizing of the Li–Sn system
  28. Thermodynamic analysis of high-temperature heazlewoodite
  29. Diffusion of chromium in β-Ti under high pressure
  30. Density and surface tension of liquid ternary Ni–Cu–Fe alloys
  31. Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
  32. Articles Applied
  33. Development of cube recrystallization textures in high-purity Al
  34. Formation of cube recrystallized grains in high-purity Al
  35. Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
  36. The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
  37. Kinetics studies of hydrogen reduction of Cu2O
  38. Decomposition kinetics of expanded austenite with high nitrogen contents
  39. Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
  40. Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
  41. Notifications/Mitteilungen
  42. Richtlinien für Autoren
  43. Instructions for authors
  44. Personal/ personelles
  45. Press/ Presse
  46. Conferences /Konferenzen
Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2006-0009/html
Scroll to top button