Home Thermodynamic analysis of high-temperature heazlewoodite
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic analysis of high-temperature heazlewoodite

  • Peter Waldner EMAIL logo
Published/Copyright: January 7, 2022
Become an author with De Gruyter Brill

Abstract

Experimental data for phase equilibria and thermodynamic properties have been used for thermodynamic analysis of the high-temperature heazlewoodite. A two-sublattice model in the framework of the Compound Energy Formalism is proposed for the Gibbs energy of a second high-temperature heazlewoodite phase around the composition Ni3S4. Optimized model parameters have been obtained which reproduce all data simultaneously within experimental error limits. The Gibbs energy modeling is carried out consistently with the recent assessment by the author of the nickel – sulfur system at 1 bar pressure over the entire composition range for temperatures from 25 °C to above the liquidus.


Ass.-Prof. Dr. Peter Waldner Physikalische Chemie, Montanuniversität Leoben Franz-Josef-Straße 18, A-8700 Leoben, Austria Tel.: +43 3842 402 4810 Fax: +43 3842 402 4802

  1. The author wishes to thank Prof. Sitte for his interest in this work.

References

[1] P. Waldner, A.D. Pelton: Z. Metallkd. 95 (2004) 672.10.3139/146.018005Search in Google Scholar

[2] T. Rosenqvist: J. Iron Steel Inst. 176 (1954) 37.10.1051/mattech/195437060176Search in Google Scholar

[3] M. Hansen, K. Anderko: Constitution of Binary Alloys, 2nd ed., McGraw-Hill Book Company, New York (1958).10.1149/1.2428700Search in Google Scholar

[4] G. Kullerud, R.A. Yund: J. Petrol. 3 (1962) 126.10.1093/petrology/3.1.126Search in Google Scholar

[5] G. Liné, M. Huber: Compt. Rend. Hebd. Séances Acad. Sci. 256 (1963) 3118.Search in Google Scholar

[6] H. Rau: J. Phys. Chem. Solids, 37 (1976) 929.10.1016/0022-3697(76)90033-0Search in Google Scholar

[7] R.Y. Lin, D.C. Hu, Y.A. Chang: Metall. Trans. B 9 (1978) 531.10.1007/BF03257200Search in Google Scholar

[8] R.C. Sharma, Y.A. Chang: Metall. Trans. B 11 (1980) 139.10.1007/BF02657183Search in Google Scholar

[9] A. Egami, T. Nagakawa, T. Oishi, K. Ono, J. Moriyama: Trans. Jpn. Inst. Met. 27 (1986) 890.10.2320/matertrans1960.27.890Search in Google Scholar

[10] H. Fjellvåg, A. Andersen: Acta Chim. Scand. 48 (1994) 290.10.3891/acta.chem.scand.48-0290Search in Google Scholar

[11] A. Kitakaze, A. Sugaki: Neues Jahrb. Mineral. Monatsh. 1 (2001) 41.Search in Google Scholar

[12] Zh.N. Fedorova, E.F. Sinyakova: Russ. J. Geol. Geophys. 43 (1993) 79.Search in Google Scholar

[13] S. Karup-Møller, E. Makovicky: Neues Jahrb. Mineral., Monatsh. 1 (1995) 1.Search in Google Scholar

[14] P. Waldner, A.D. Pelton: Metall. Mater. Trans. B 35 (2004) 897.10.1007/s11663-004-0084-7Search in Google Scholar

[15] S.C. Schaefer: U.S. Bur. of Mines RI 8588 (1981).Search in Google Scholar

[16] G.M. Mehrotra, V.B. Tare, J.B. Wagner: J. Electrochem. Soc. 132 (1985) 250.10.1149/1.2113775Search in Google Scholar

[17] M. Hillert, L.I. Staffanson: Acta Chem. Scand. 24 (1970) 3618.10.3891/acta.chem.scand.24-3618Search in Google Scholar

[18] B. Sundman, J. Ågren: J. Phys. Chem. Solids 42 (1981) 297.10.1016/0022-3697(81)90144-XSearch in Google Scholar

[19] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, S. Petersen: CALPHAD 26 (2002) 189.10.1016/S0364-5916(02)00035-4Search in Google Scholar

[20] G. Eriksson, K. Hack: Metall. Trans. B 21 (1990) 1013.10.1007/BF02670272Search in Google Scholar

[21] E. Königsberger, G. Eriksson: CALPHAD 19 (1995) 207.10.1016/0364-5916(95)00021-6Search in Google Scholar

[22] A.T. Dinsdale: CALPHAD 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[23] K. Bornemann: Metallurgie 7 (1910) 667.10.1051/metal/191007111078Search in Google Scholar

[24] R.G. Arnold, G. Kullerud: Carnegie Inst. Washington Yearb. 55 (1956) 178.Search in Google Scholar

[25] M.A. Sokolova: Proc. Acad. Sci. USSR, Chem. Sect. 106 (1956) 59.Search in Google Scholar

[26] M. Laffitte: Bull. Soc. Chim. Fr. (1959) 1211.Search in Google Scholar

[27] Y.Y. Chuang: The Thermodynamics and Phase Relationships of the Cu–Ni–Fe–S Quaternary System and Its Subsystems, University of Wisconsin-Madison (1983).Search in Google Scholar

[28] M. Nagamori, T.R. Ingraham: Metall. Trans. 1 (1970) 1821.10.1007/BF02642777Search in Google Scholar

[29] M. Takewaki, T. Azakami, M. Kameda: Tohoku Daigaku Senko Seiren Kenkyushu Iho 28 (1972) 113.Search in Google Scholar

[30] A.G. Meyer, J.S. Warner, Y.K. Rao, H.H. Kellogg: Metall. Trans. B 6 (1975) 229.10.1007/BF02913564Search in Google Scholar

[31] H. Rau: J. Phys. Chem. Solids, 36 (1975) 1199.10.1016/0022-3697(75)90190-0Search in Google Scholar

[32] M. Singleton, P. Nash, K.J. Lee: Phase Diagrams of Binary Nickel Alloys, ASM, Metals Park (1991) 277.Search in Google Scholar

[33] S. Stølen, H. Fjellvåg, F. Grønvold, E.F. Westrum: J. Chem. Thermodyn. 26 (1994) 987.10.1006/jcht.1994.1116Search in Google Scholar

Received: 2005-02-17
Accepted: 2005-10-10
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. The Pd-rich part of the Pd–B phase diagram
  4. Thermodynamic optimizing of the Li–Sn system
  5. Thermodynamic analysis of high-temperature heazlewoodite
  6. Diffusion of chromium in β-Ti under high pressure
  7. Density and surface tension of liquid ternary Ni–Cu–Fe alloys
  8. Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
  9. Development of cube recrystallization textures in high-purity Al
  10. Formation of cube recrystallized grains in high-purity Al
  11. Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
  12. The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
  13. Kinetics studies of hydrogen reduction of Cu2O
  14. Decomposition kinetics of expanded austenite with high nitrogen contents
  15. Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
  16. Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
  17. Richtlinien für Autoren
  18. Instructions for authors
  19. Personal/ personelles
  20. Press/ Presse
  21. Conferences /Konferenzen
  22. Frontmatter
  23. Editorial
  24. Editorial
  25. Articles Basic
  26. The Pd-rich part of the Pd–B phase diagram
  27. Thermodynamic optimizing of the Li–Sn system
  28. Thermodynamic analysis of high-temperature heazlewoodite
  29. Diffusion of chromium in β-Ti under high pressure
  30. Density and surface tension of liquid ternary Ni–Cu–Fe alloys
  31. Influence of electric field strength applied during the solution heat treatment of the Al–Mg–Si–Cu Alloy AA6111
  32. Articles Applied
  33. Development of cube recrystallization textures in high-purity Al
  34. Formation of cube recrystallized grains in high-purity Al
  35. Effect of various niobium additions on microstructure and mechanical behavior of a NiAl–Cr–Mo eutectic alloy
  36. The effect of exposure to elevated temperatures on the microstructure and hardness of Mg–Ca–Zn alloy
  37. Kinetics studies of hydrogen reduction of Cu2O
  38. Decomposition kinetics of expanded austenite with high nitrogen contents
  39. Estimation of the viscosity for Ag–In and In–Sb liquid alloys using different models
  40. Elevated temperature tensile properties of an extruded aluminium alloy reinforced with SiCp
  41. Notifications/Mitteilungen
  42. Richtlinien für Autoren
  43. Instructions for authors
  44. Personal/ personelles
  45. Press/ Presse
  46. Conferences /Konferenzen
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0003/html
Scroll to top button