Startseite Fatigue behavior of polycrystalline thin copper films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fatigue behavior of polycrystalline thin copper films

  • O. Kraft EMAIL logo , P. Wellner , M. Hommel , R. Schwaiger und E. Arzt
Veröffentlicht/Copyright: 31. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fatigue, a common damage and failure mechanism in bulk metals, is largely unexplored for thin films. In the present paper, we report on the fatigue behavior of Cu films with thicknesses in the range 0.4– 3.1μm on deformable substrates. Films thicker than 1 μm seem to behave like bulk Cu and follow a Manson-Coffin relationship with a fatigue exponent and ductility of about 0.5 and 20%, respectively. For the sub-micron thick films, a clear size effect is observed: the damage morphology changes and the lifetime increases significantly. Based on a microscopical damage analysis, the following sequence for the fatigue damage evolution in the Cu films is suggested: (i) in large grains, extrusions at the film surface and voids at the interface to the substrate are formed, (ii) cracks are nucleated at these voids and grow towards the film surface, and (iii) cracks connect intergranularly to form a continuous pattern of cracks and extrusions in the film. It is argued that void nucleation is the result of the formation of vacancies due to the annihilation of edge dislocations.


Dr. O. Kraft Max-Planck-Institut für Metallforschung Heisenbergstr. 3, D-70569 Stuttgart, Germany Tel.: +49 711 689 3439 Fax: +49 711 689 3412

Enlightening discussions with U. Essmann, H. Mughrabi, and L. M. Brown are gratefully acknowledged. The FIB system was procured from DFG funds (Leibniz programme).


References

1 Nix, W.D.: Met. Trans. A 20 (1989) 2217.10.1007/BF02666659Suche in Google Scholar

2 Arzt, E.: Acta metall. mater. 46 (1998) 5611.10.1016/S1359-6454(98)00231-6Suche in Google Scholar

3 Chaudhari, P.: Phil. Mag. A 39 (1979) 507.10.1080/01418617908239287Suche in Google Scholar

4 Ronay, M.: Phil. Mag. A 40 (1979) 145.10.1080/01418617908243094Suche in Google Scholar

5 Thompson, C.V.: J. Mater. Res. 8 (1993) 237.10.1557/JMR.1993.0237Suche in Google Scholar

6 Philofsky, E.; Ravi, K.; Hall, E.; Black, J., in: 9th Annual Proc. of Reliability Physics, IEEE, New York, NY (1971) 120.Suche in Google Scholar

7 Keller, R.R.; Mönig, R.; Volkert, C.A.; Arzt, E.; Schwaiger, R.; Kraft, O., to be published in: 6th International Workshop on Stress-Induced Phenomena in Metallization, AIP Conf. Proc., Woodbury, NY.Suche in Google Scholar

8 Huang, M.; Suo, Z.; Ma, Q.; Fujimoto, H.: J. Mater. Res. 15 (2000) 1239.10.1557/JMR.2000.0177Suche in Google Scholar

9 Read, D.T.; Dally, J.W.: J. Electronic Packaging 117 (1995) 1.10.1115/1.2792062Suche in Google Scholar

10 Read, D.T.: Int. J. Fatigue 20 (1998) 203.10.1016/S0142-1123(97)00080-7Suche in Google Scholar

11 Merchant, H.D.; Minor, M.G.; Liu, Y.L.: J. Electron Mater. 28 (1999) 998.10.1007/s11664-999-0176-xSuche in Google Scholar

12 Oshida, Y.; Chen, P.C.: J. Electronic Packaging 113 (1991) 58.10.1115/1.2905367Suche in Google Scholar

13 Schwaiger, R.; Kraft, O.: Scripta mater. 41 (1999) 823.10.1016/S1359-6462(99)00231-6Suche in Google Scholar

14 Kraft, O.; Schwaiger, R.; Wellner, P.: Mat. Sci. Eng. A 319–321 (2001) 919.10.1016/S0921-5093(01)00990-XSuche in Google Scholar

15 Schwaiger, R.: Ph.D. Thesis, Universität Stuttgart (2001).Suche in Google Scholar

16 Essmann, U.; Mughrabi, H.: Phil. Mag. A 40 (1979) 731.10.1080/01418617908234871Suche in Google Scholar

17 Coffin, L.R.J.: Trans. ASME 76 (1954) 931.Suche in Google Scholar

18 Manson, S.S.: National Advisory Comission on Aeronautics, Report 1170, Lewis Flight Propulsion Laboratory, Cleveland, OH (1954).Suche in Google Scholar

19 Hommel, M.; Kraft, O.; Arzt, E.: J. Mater. Res. 14 (1999) 2373.10.1557/JMR.1999.0317Suche in Google Scholar

20 Kuschke, W.-M.; Kretschmann, A.; Keller, R.-M.; Vinci, R.P.; Kaufmann, C.; Arzt, E.: J. Mater. Res. 13 (1998) 2962.10.1557/JMR.1998.0405Suche in Google Scholar

21 Kretschmann, A.; Kuschke, W.-M.; Baker, S.P.; Arzt, E.: Mat. Res. Soc. Symp. Proc. 436 (1996) 59.10.1557/PROC-436-59Suche in Google Scholar

22 Hommel, M.; Kraft, O.: Acta mater. 49 (2001) 3935.10.1016/S1359-6454(01)00293-2Suche in Google Scholar

23 Agnew, S.R.; Vinogradov, A.Y.; Hashimoto, S.;Weertman, J.R.: J. Electron Mater. 28 (1999) 1038.10.1007/s11664-999-0181-0Suche in Google Scholar

24 Mughrabi, H.; Wang, R., in: P. Lukás, J. Polák (eds.), Basic Mechanisms in Fatigue of Metals, Elsevier, Amsterdam (1988) 1.Suche in Google Scholar

25 Polák, J.: Mater. Sci. Eng. A 92 (1987) 71.10.1016/0025-5416(87)90157-1Suche in Google Scholar

26 Essmann, U.; Gösele, U.; Mughrabi, H.: Phil. Mag. A 44 (1981) 405.10.1080/01418618108239541Suche in Google Scholar

27 Simmons, R.O.; Balluffi, R.W.: Phys. Rev. 117 (1960) 52.10.1103/PhysRev.117.52Suche in Google Scholar

28 Frost, H.J.; Ashby, M.F.: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford (1982).Suche in Google Scholar

Received: 2002-02-19
Published Online: 2022-01-31

© 2002 Carl Hanser Verlag, München

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0068/html?lang=de
Button zum nach oben scrollen